Soft sphere potential: Difference between revisions
Carl McBride (talk | contribs) m (Added a reference.) |
m (Added another reference.) |
||
| Line 7: | Line 7: | ||
</math> | </math> | ||
where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math>is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model becomes the high temperature limit of the [[Lennard-Jones model]] | where <math> \Phi_{12}\left(r \right) </math> is the [[intermolecular pair potential]] between two soft spheres separated by a distance <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>, <math>\epsilon </math>is the interaction strength and <math> \sigma </math> is the diameter of the sphere. Frequently the value of <math>n</math> is taken to be 12, thus the model becomes the high temperature limit of the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1103/PhysRevA.2.221 Jean-Pierre Hansen "Phase Transition of the Lennard-Jones System. II. High-Temperature Limit", Physical Review A '''2''' pp. 221-230 (1970)]</ref> | ||
==References== | ==References== | ||
<references/> | <references/> | ||
''' | '''Related reading''' | ||
*[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)] | *[http://dx.doi.org/10.1063/1.1672728 William G. Hoover, Marvin Ross, Keith W. Johnson, Douglas Henderson, John A. Barker and Bryan C. Brown "Soft-Sphere Equation of State", Journal of Chemical Physics '''52''' pp. 4931-4941 (1970)] | ||
[[category: models]] | [[category: models]] | ||
Revision as of 14:04, 12 May 2009
The soft sphere potential intermolecular pair potential is defined as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left( r \right) = \left\{ \begin{array}{lll} \epsilon \left( \frac{\sigma}{r}\right) ^n & ; & r \le \sigma \\ 0 & ; & r > \sigma \end{array} \right. }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}\left(r \right) } is the intermolecular pair potential between two soft spheres separated by a distance , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon } is the interaction strength and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the diameter of the sphere. Frequently the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} is taken to be 12, thus the model becomes the high temperature limit of the Lennard-Jones model [1]
References
Related reading