Lennard-Jones equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a new reference.)
m (Tmp save.)
Line 1: Line 1:
{{Numeric}}
{{Numeric}}
The equation of state of the [[Lennard-Jones model]].
The equation of state of the [[Lennard-Jones model]].
==Equation of state==
==Johnson, Zollweg and Gubbins equation of state==
Johnson et al [1] propose an equation of state based on 33 parameters, which accurately reproduces the [[Density-temperature | vapor liquid equilibrium]] curve.
Johnson et al <ref>[http://dx.doi.org/10.1080/00268979300100411 J. Karl Johnson, John A. Zollweg and Keith E. Gubbins "The Lennard-Jones equation of state revisited", Molecular Physics '''78''' pp. 591-618 (1993)]</ref> proposed an equation of state based on 33 parameters, which accurately reproduces the [[Density-temperature | vapor liquid equilibrium]] curve.
==Kolafa and Nezbeda equation of state==
The Kolafa and Nezbeda equation of state <ref>[http://dx.doi.org/10.1016/0378-3812(94)80001-4  Jirí Kolafa, Ivo Nezbeda "The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state", Fluid Phase Equilibria '''100''' pp. 1-34 (1994)]</ref>
==Melting line==
==Melting line==
The solid and liquid densities along the melting line are given by the equations of Mastny and  de Pablo (Ref. 5 Eqs. 20 and 21):
The solid and liquid densities along the melting line are given by the equations of Mastny and  de Pablo (Ref <ref>[http://dx.doi.org/10.1063/1.2753149    Ethan A. Mastny and Juan J. de Pablo "Melting line of the Lennard-Jones system, infinite size, and full potential", Journal of Chemical Physics '''127''' 104504 (2007)]</ref> Eqs. 20 and 21):


:<math>\rho_{\mathrm {solid}} = \beta^{-1/4} \left[ 0.908629 - 0.041510 \beta + 0.514632 \beta^2 -0.708590\beta^3 + 0.428351 \beta^4 -0.095229 \beta^5\right]</math>  
:<math>\rho_{\mathrm {solid}} = \beta^{-1/4} \left[ 0.908629 - 0.041510 \beta + 0.514632 \beta^2 -0.708590\beta^3 + 0.428351 \beta^4 -0.095229 \beta^5\right]</math>  
Line 12: Line 14:
:<math>\rho_{\mathrm {liquid}} = \beta^{-1/4} \left[ 0.90735 - 0.27120 \beta + 0.91784 \beta^2 -1.16270\beta^3 + 0.68012 \beta^4 -0.15284 \beta^5\right]</math>
:<math>\rho_{\mathrm {liquid}} = \beta^{-1/4} \left[ 0.90735 - 0.27120 \beta + 0.91784 \beta^2 -1.16270\beta^3 + 0.68012 \beta^4 -0.15284 \beta^5\right]</math>


==References==
==References==
#[http://dx.doi.org/10.1080/00268979300100411 J. Karl Johnson, John A. Zollweg and Keith E. Gubbins "The Lennard-Jones equation of state revisited", Molecular Physics '''78''' pp. 591-618 (1993)]
<references/>
'''Related reading'''
#[http://dx.doi.org/10.1016/0378-3812(93)87002-I  Karel Aim, Jirí Kolafa, Ivo Nezbeda and Horst L. Vörtler "The Lennard-Jones fluid revisited: new thermodynamic data and new equation of state", Fluid Phase Equilibria  '''83''' pp. 15-22 (1993)]
#[http://dx.doi.org/10.1016/0378-3812(93)87002-I  Karel Aim, Jirí Kolafa, Ivo Nezbeda and Horst L. Vörtler "The Lennard-Jones fluid revisited: new thermodynamic data and new equation of state", Fluid Phase Equilibria  '''83''' pp. 15-22 (1993)]
#[http://dx.doi.org/10.1016/0378-3812(94)80001-4  Jirí Kolafa, Ivo Nezbeda "The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state", Fluid Phase Equilibria '''100''' pp. 1-34 (1994)]
#[http://dx.doi.org/10.1023/A:1023394122000 G. Sh. Boltachev and V. G. Baidakov "Equation of State for Lennard-Jones Fluid", High Temperature '''41''' pp. 270-272 (2003)]
#[http://dx.doi.org/10.1023/A:1023394122000 G. Sh. Boltachev and V. G. Baidakov "Equation of State for Lennard-Jones Fluid", High Temperature '''41''' pp. 270-272 (2003)]
#[http://dx.doi.org/10.1021/ie0495628 Hertanto Adidharma and Maciej Radosz "The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures", Industrial and Engineering Chemistry Research '''43''' pp. 6890 - 6897 (2004)]
#[http://dx.doi.org/10.1021/ie0495628 Hertanto Adidharma and Maciej Radosz "The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures", Industrial and Engineering Chemistry Research '''43''' pp. 6890 - 6897 (2004)]
#[http://dx.doi.org/10.1063/1.1823371    David M. Eike, Joan F. Brennecke, and Edward J. Maginn "Toward a robust and general molecular simulation method for computing solid-liquid coexistence", Journal of Chemical Physics '''122''' 014115 (2005)]
#[http://dx.doi.org/10.1063/1.1823371    David M. Eike, Joan F. Brennecke, and Edward J. Maginn "Toward a robust and general molecular simulation method for computing solid-liquid coexistence", Journal of Chemical Physics '''122''' 014115 (2005)]
#[http://dx.doi.org/10.1063/1.2753149    Ethan A. Mastny and Juan J. de Pablo "Melting line of the Lennard-Jones system, infinite size, and full potential", Journal of Chemical Physics '''127''' 104504 (2007)]
#
[[category: equations of state]]
[[category: equations of state]]

Revision as of 10:30, 26 June 2009

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.

The equation of state of the Lennard-Jones model.

Johnson, Zollweg and Gubbins equation of state

Johnson et al [1] proposed an equation of state based on 33 parameters, which accurately reproduces the vapor liquid equilibrium curve.

Kolafa and Nezbeda equation of state

The Kolafa and Nezbeda equation of state [2]

Melting line

The solid and liquid densities along the melting line are given by the equations of Mastny and de Pablo (Ref [3] Eqs. 20 and 21):

and


References

Related reading

  1. Karel Aim, Jirí Kolafa, Ivo Nezbeda and Horst L. Vörtler "The Lennard-Jones fluid revisited: new thermodynamic data and new equation of state", Fluid Phase Equilibria 83 pp. 15-22 (1993)
  2. G. Sh. Boltachev and V. G. Baidakov "Equation of State for Lennard-Jones Fluid", High Temperature 41 pp. 270-272 (2003)
  3. Hertanto Adidharma and Maciej Radosz "The LJ-Solid Equation of State Extended to Thermal Properties, Chain Molecules, and Mixtures", Industrial and Engineering Chemistry Research 43 pp. 6890 - 6897 (2004)
  4. David M. Eike, Joan F. Brennecke, and Edward J. Maginn "Toward a robust and general molecular simulation method for computing solid-liquid coexistence", Journal of Chemical Physics 122 014115 (2005)