Hard ellipsoid model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Overlap algorithm: DOI correction)
(Added a new reference annd changed references to Cite format.)
Line 10: Line 10:
axis.
axis.
==Overlap algorithm==
==Overlap algorithm==
The most widely used overlap algorithm is that of Perram and Wertheim:
The most widely used overlap algorithm is that of Perram and Wertheim  
*[http://dx.doi.org/10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]
<ref>[http://dx.doi.org/10.1016/0021-9991(85)90171-8  John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics  '''58''' pp. 409-416 (1985)]</ref>.


==Geometric properties==
==Geometric properties==
The mean radius of curvature is given by (Refs. 5 and 6)
The mean radius of curvature is given by
<ref>[http://dx.doi.org/10.1063/1.472110    G. S. Singh and B. Kumar  "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics '''105''' pp. 2429-2435 (1996)]</ref>
<ref>[http://dx.doi.org/10.1006/aphy.2001.6166 G. S. Singh and B. Kumar "Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems", Annals of Physics  '''294''' pp. 24-47 (2001)]</ref>


:<math>R= \frac{a}{2} \left[  \sqrt{\frac{1+\epsilon_b}{1+\epsilon_c}} + \sqrt \epsilon_c \left\{ \frac{1}{\epsilon_c} F(\varphi , k_1) + E(\varphi,k_1) \right\}\right],
:<math>R= \frac{a}{2} \left[  \sqrt{\frac{1+\epsilon_b}{1+\epsilon_c}} + \sqrt \epsilon_c \left\{ \frac{1}{\epsilon_c} F(\varphi , k_1) + E(\varphi,k_1) \right\}\right],
Line 51: Line 53:
==Maximum packing fraction==
==Maximum packing fraction==
Using [[event-driven molecular dynamics]], it has been found that the maximally random jammed (MRJ) [[packing fraction]] for hard ellipsoids is <math>\phi=0.7707</math>  for
Using [[event-driven molecular dynamics]], it has been found that the maximally random jammed (MRJ) [[packing fraction]] for hard ellipsoids is <math>\phi=0.7707</math>  for
models whose maximal aspect ratio is greater than <math>\sqrt{3}</math>.
models whose maximal aspect ratio is greater than <math>\sqrt{3}</math>
#[http://dx.doi.org/10.1126/science.1093010 Aleksandar Donev, Ibrahim Cisse, David Sachs, Evan A. Variano, Frank H. Stillinger, Robert Connelly, Salvatore Torquato, and P. M. Chaikin "Improving the Density of Jammed Disordered Packings Using Ellipsoids", Science '''303''' pp. 990-993 (2004)]
<ref>[http://dx.doi.org/10.1126/science.1093010 Aleksandar Donev, Ibrahim Cisse, David Sachs, Evan A. Variano, Frank H. Stillinger, Robert Connelly, Salvatore Torquato, and P. M. Chaikin "Improving the Density of Jammed Disordered Packings Using Ellipsoids", Science '''303''' pp. 990-993 (2004)]</ref>
#[http://dx.doi.org/10.1103/PhysRevLett.92.255506  Aleksandar Donev, Frank H. Stillinger, P. M. Chaikin and Salvatore Torquato "Unusually Dense Crystal Packings of Ellipsoids", Physical Review Letters '''92''' 255506 (2004)]
<ref>[http://dx.doi.org/10.1103/PhysRevLett.92.255506  Aleksandar Donev, Frank H. Stillinger, P. M. Chaikin and Salvatore Torquato "Unusually Dense Crystal Packings of Ellipsoids", Physical Review Letters '''92''' 255506 (2004)]</ref>
==Equation of state==
==Equation of state==
:''Main article: [[Hard ellipsoid equation of state]]''
:''Main article: [[Hard ellipsoid equation of state]]''
==Virial coefficients==
==Virial coefficients==
:''Main article: [[Hard ellipsoids: virial coefficients]]
:''Main article: [[Hard ellipsoids: virial coefficients]]
==Related models==
==Phase diagram==
*[[Hard ellipse model]] (2-dimensional ellipsoids)
One of the first [[phase diagrams]] of the hard ellipsoid model was that of Frenkel and Mulder (Figure 6 in
<ref>[http://dx.doi.org/10.1080/00268978500101971 D. Frenkel and B. M. Mulder  "The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations", Molecular Physics '''55''' pp. 1171-1192 (1985)]</ref>).
Camp and Allen later studied biaxial ellipsoids
<ref>[http://dx.doi.org/10.1063/1.473665 Philip J. Camp and Michael P. Allen "Phase diagram of the hard biaxial ellipsoid fluid",  Journal of Chemical Physics  '''106''' pp. 6681- (1997)]</ref>. It has recently been shown
<ref>[http://arxiv.org/abs/0908.1043 M. Radu, P. Pfleiderer, T. Schilling "Solid-solid phase transition in hard ellipsoids", arXiv:0908.1043v1 7 Aug (2009)]</ref>
that the [[SM2 structure]] is more stable than the [[Building up a face centered cubic lattice |  face centered cubic]] structure for aspect ratios <math>a/b \ge 2.0</math>
==Hard ellipse model==
:''Main article: [[Hard ellipse model]]'' (2-dimensional ellipsoids)
==References==
==References==
#[http://dx.doi.org/10.1080/00268978500101971 D. Frenkel and B. M. Mulder  "The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations", Molecular Physics '''55''' pp. 1171-1192 (1985)]
<references/>
#[http://dx.doi.org/10.1080/02678299008047365 Michael P. Allen "Computer simulation of a biaxial liquid crystal", Liquid Crystals '''8''' pp. 499-511 (1990)]
'''Related reading'''
#[http://dx.doi.org/10.1063/1.473665 Philip J. Camp and Michael P. Allen "Phase diagram of the hard biaxial ellipsoid fluid",  Journal of Chemical Physics  '''106''' pp. 6681- (1997)]
 
#[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
*[http://dx.doi.org/10.1080/02678299008047365 Michael P. Allen "Computer simulation of a biaxial liquid crystal", Liquid Crystals '''8''' pp. 499-511 (1990)]
#[http://dx.doi.org/10.1063/1.472110    G. S. Singh and B. Kumar  "Geometry of hard ellipsoidal fluids and their virial coefficients", Journal of Chemical Physics '''105''' pp. 2429-2435 (1996)]
*[http://dx.doi.org/10.1016/j.fluid.2007.03.026  Carl McBride and Enrique Lomba "Hard biaxial ellipsoids revisited: Numerical results", Fluid Phase Equilibria  '''255''' pp. 37-45 (2007)]
#[http://dx.doi.org/10.1006/aphy.2001.6166 G. S. Singh and B. Kumar "Molecular Fluids and Liquid Crystals in Convex-Body Coordinate Systems", Annals of Physics  '''294''' pp. 24-47 (2001)]
[[Category: Models]]
[[Category: Models]]

Revision as of 11:56, 12 August 2009

A uniaxial prolate ellipsoid, a>b, b=c.
A uniaxial oblate ellipsoid, a>c, a=b.

Hard ellipsoids represent a natural choice for an anisotropic model. Ellipsoids can be produced from an affine transformation of the hard sphere model. However, in difference to the hard sphere model, which has fluid and solid phases, the hard ellipsoid model is also able to produce a nematic phase.

Interaction Potential

The general ellipsoid, also called a triaxial ellipsoid, is a quadratic surface which is given in Cartesian coordinates by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } and define the lengths of the axis.

Overlap algorithm

The most widely used overlap algorithm is that of Perram and Wertheim [1].

Geometric properties

The mean radius of curvature is given by [2] [3]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R= \frac{a}{2} \left[ \sqrt{\frac{1+\epsilon_b}{1+\epsilon_c}} + \sqrt \epsilon_c \left\{ \frac{1}{\epsilon_c} F(\varphi , k_1) + E(\varphi,k_1) \right\}\right], }

and the surface area is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S= 2 \pi a^2 \left[ 1+ \sqrt {\epsilon_c(1+\epsilon_b)} \left\{ \frac{1}{\epsilon_c} F(\varphi , k_2) + E(\varphi,k_2)\right\} \right], }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(\varphi,k)} is an elliptic integral of the first kind and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(\varphi,k)} is an elliptic integral of the second kind, with the amplitude being

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi = \tan^{-1} (\sqrt \epsilon_c),}

and the moduli

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2= \sqrt{\frac{\epsilon_b (1+\epsilon_c)}{\epsilon_c(1+\epsilon_b)}},}

where the anisotropy parameters, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_c} , are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b = \left( \frac{b}{a} \right)^2 -1,}

and

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \epsilon _{c}=\left({\frac {c}{a}}\right)^{2}-1.}

The volume of the ellipsoid is given by the well known

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V = \frac{4 \pi}{3}abc.}

Mathematica notebook file for calculating the surface area and mean radius of curvature of an ellipsoid

Maximum packing fraction

Using event-driven molecular dynamics, it has been found that the maximally random jammed (MRJ) packing fraction for hard ellipsoids is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi=0.7707} for models whose maximal aspect ratio is greater than Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{3}} [4] [5]

Equation of state

Main article: Hard ellipsoid equation of state

Virial coefficients

Main article: Hard ellipsoids: virial coefficients

Phase diagram

One of the first phase diagrams of the hard ellipsoid model was that of Frenkel and Mulder (Figure 6 in [6]). Camp and Allen later studied biaxial ellipsoids [7]. It has recently been shown [8] that the SM2 structure is more stable than the face centered cubic structure for aspect ratios Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a/b \ge 2.0}

Hard ellipse model

Main article: Hard ellipse model (2-dimensional ellipsoids)

References

Related reading