Entropy: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Statistical mechanics: Added an internal link)
m (Slight tidy.)
Line 1: Line 1:
{{Stub-general}}
:'' "Energy has to do with possibilities. Entropy has to do with the probabilities of those possibilities happening. It takes energy and performs a further epistemological step." ''
{{Cleanup-rewrite}}
::::: '''[[Constantino Tsallis]]''' <ref>http://www.mlahanas.de/Greeks/new/Tsallis.htm</ref>
'''Entropy''' was first described by [[Rudolf Julius Emanuel Clausius]] in 1865 (Ref. 1). The [[statistical mechanics | statistical mechanical]] desciption is due to [[Ludwig Eduard Boltzmann]] (Ref. ?).
'''Entropy''' was first described by [[Rudolf Julius Emanuel Clausius]] in 1865 <ref>[http://dx.doi.org/10.1002/andp.18652010702 R. Clausius "Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie", Annalen der Physik und Chemie '''125''' pp. 353-400 (1865)]</ref>. The [[statistical mechanics | statistical mechanical]] desciption is due to [[Ludwig Eduard Boltzmann]] (Ref. ?).
==Classical thermodynamics==
==Classical thermodynamics==
In [[classical thermodynamics]] one has the '''entropy''', S,
In [[classical thermodynamics]] one has the entropy, <math>S</math>,
:<math>{\mathrm d} S = \frac{\delta Q_{\mathrm {reversible}}} {T} </math>
:<math>{\mathrm d} S = \frac{\delta Q_{\mathrm {reversible}}} {T} </math>


where <math>Q</math> is the [[heat]] and <math>T</math> is the [[temperature]].  
where <math>Q</math> is the [[heat]] and <math>T</math> is the [[temperature]].  
==Statistical mechanics==
==Statistical mechanics==
In [[statistical mechanics]] the '''entropy''', S, is defined by
In [[statistical mechanics]] entropy is defined by


:<math>\left. S \right. = -k_B \sum_m p_m \ln p_m</math>
:<math>\left. S \right. = -k_B \sum_m p_m \ln p_m</math>
Line 35: Line 35:
==See also:==
==See also:==
*[[Entropy of a glass]]
*[[Entropy of a glass]]
*[[H-theorem]]
*[[Non-extensive thermodynamics]]
*[[Shannon entropy]]
*[[Shannon entropy]]
*[[Tsallis entropy]]
==References==
*[[H-theorem]]
<references/>
 
'''Related reading'''
==Interesting reading==
*[http://dx.doi.org/10.1119/1.1990592 Karl K. Darrow "The Concept of Entropy",  American Journal of Physics '''12''' pp.  183-196 (1944)]
*[http://dx.doi.org/10.1119/1.1990592 Karl K. Darrow "The Concept of Entropy",  American Journal of Physics '''12''' pp.  183-196 (1944)]
*[http://dx.doi.org/10.1119/1.1971557 E. T. Jaynes "Gibbs vs Boltzmann Entropies",  American Journal of Physics '''33''' pp. 391-398 (1965)]
*[http://dx.doi.org/10.1119/1.1971557 E. T. Jaynes "Gibbs vs Boltzmann Entropies",  American Journal of Physics '''33''' pp. 391-398 (1965)]
Line 45: Line 46:
*[http://www.ucl.ac.uk/~ucesjph/reality/entropy/text.html S. F. Gull "Some Misconceptions about Entropy" in Brian Buck and Vincent A. MacAulay (Eds.) "Maximum Entropy in Action", Oxford Science Publications (1991)]
*[http://www.ucl.ac.uk/~ucesjph/reality/entropy/text.html S. F. Gull "Some Misconceptions about Entropy" in Brian Buck and Vincent A. MacAulay (Eds.) "Maximum Entropy in Action", Oxford Science Publications (1991)]
*[http://dx.doi.org/10.2174/1874396X00802010007 Efstathios E. Michaelides "Entropy, Order and Disorder", The Open Thermodynamics Journal '''2''' pp. (2008)]
*[http://dx.doi.org/10.2174/1874396X00802010007 Efstathios E. Michaelides "Entropy, Order and Disorder", The Open Thermodynamics Journal '''2''' pp. (2008)]
 
*Ya. G. Sinai, "On the Concept of Entropy of a Dynamical System," Doklady Akademii Nauk SSSR '''124''' pp. 768-771 (1959)
==References==
*[http://dx.doi.org/10.1063/1.1670348 William G. Hoover "Entropy for Small Classical Crystals", Journal of Chemical Physics '''49''' pp. 1981-1982 (1968)]
#[http://dx.doi.org/10.1002/andp.18652010702 R. Clausius "Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie", Annalen der Physik und Chemie '''125''' pp. 353-400 (1865)]
[[category: statistical mechanics]]
#Ya. G. Sinai, "On the Concept of Entropy of a Dynamical System," Doklady Akademii Nauk SSSR '''124''' pp. 768-771 (1959)
[[category: Classical thermodynamics]]
#[http://dx.doi.org/10.1063/1.1670348 William G. Hoover "Entropy for Small Classical Crystals", Journal of Chemical Physics '''49''' pp. 1981-1982 (1968)]
[[category:statistical mechanics]]
[[Classical thermodynamics]]

Revision as of 15:38, 11 November 2009

"Energy has to do with possibilities. Entropy has to do with the probabilities of those possibilities happening. It takes energy and performs a further epistemological step."
Constantino Tsallis [1]

Entropy was first described by Rudolf Julius Emanuel Clausius in 1865 [2]. The statistical mechanical desciption is due to Ludwig Eduard Boltzmann (Ref. ?).

Classical thermodynamics

In classical thermodynamics one has the entropy, ,

where is the heat and is the temperature.

Statistical mechanics

In statistical mechanics entropy is defined by

where is the Boltzmann constant, m is the index for the microstates, and is the probability that microstate m is occupied. In the microcanonical ensemble this gives:

where (sometimes written as ) is the number of microscopic configurations that result in the observed macroscopic description of the thermodynamic system. This equation provides a link between classical thermodynamics and statistical mechanics

Arrow of time

Articles:

Books:

  • Steven F. Savitt (Ed.) "Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time", Cambridge University Press (1997) ISBN 0521599458
  • Michael C. Mackey "Time's Arrow: The Origins of Thermodynamic Behavior" (1992) ISBN 0486432432
  • Huw Price "Time's Arrow and Archimedes' Point New Directions for the Physics of Time" Oxford University Press (1997) ISBN 978-0-19-511798-1

See also:

References

Related reading