Carnahan-Starling equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Virial expansion: n not B_n)
Line 49: Line 49:


:<math>\frac{\beta p^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}</math>
:<math>\frac{\beta p^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}</math>
Configurational [[Helmholtz energy function]]:
:<math> \beta A_{ex}^{CS} = \frac{4 \eta - 3 \eta^2 }{(1-\eta)^2}</math>


Configurational [[chemical potential]]:
Configurational [[chemical potential]]:
Line 59: Line 63:


where <math>\eta</math> is the [[packing fraction]].
where <math>\eta</math> is the [[packing fraction]].
==The 'Percus-Yevick' derivation==
==The 'Percus-Yevick' derivation==
It is interesting to note (Ref <ref> [http://dx.doi.org/10.1063/1.1675048    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics  '''54''' pp. 1523-1525 (1971)] </ref>  Eq. 6) that one can arrive at the Carnahan-Starling equation of state by adding two thirds of the [[exact solution of the Percus Yevick integral equation for hard spheres]] via the compressibility route, to one third via the pressure  route, i.e.
It is interesting to note (Ref <ref> [http://dx.doi.org/10.1063/1.1675048    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics  '''54''' pp. 1523-1525 (1971)] </ref>  Eq. 6) that one can arrive at the Carnahan-Starling equation of state by adding two thirds of the [[exact solution of the Percus Yevick integral equation for hard spheres]] via the compressibility route, to one third via the pressure  route, i.e.

Revision as of 15:26, 19 November 2009

The Carnahan-Starling equation of state is an approximate (but quite good) equation of state for the fluid phase of the hard sphere model in three dimensions. It is given by (Ref [1] Eqn. 10).

where:

  • is the pressure
  • is the volume
  • is the number of particles
  • is the Boltzmann constant
  • is the absolute temperature
  • is the packing fraction:

Virial expansion

It is interesting to compare the virial coefficients of the Carnahan-Starling equation of state (Eq. 7 of [1]) with the hard sphere virial coefficients in three dimensions (exact up to , and those of Clisby and McCoy [2]):

Clisby and McCoy
2 4 4
3 10 10
4 18.3647684 18
5 28.224512 28
6 39.8151475 40
7 53.3444198 54
8 68.5375488 70
9 85.8128384 88
10 105.775104 108

Thermodynamic expressions

From the Carnahan-Starling equation for the fluid phase the following thermodynamic expressions can be derived (Ref [3] Eqs. 2.6, 2.7 and 2.8)

Pressure (compressibility):

Configurational Helmholtz energy function:

Configurational chemical potential:

Isothermal compressibility:

where is the packing fraction.

The 'Percus-Yevick' derivation

It is interesting to note (Ref [4] Eq. 6) that one can arrive at the Carnahan-Starling equation of state by adding two thirds of the exact solution of the Percus Yevick integral equation for hard spheres via the compressibility route, to one third via the pressure route, i.e.

The reason for this seems to be a slight mystery (see discussion in Ref. [5] ).

References