Clausius equation of state: Difference between revisions
Carl McBride (talk | contribs) (Improved references.) |
Carl McBride (talk | contribs) m (Changed comment to be a reference.) |
||
| Line 5: | Line 5: | ||
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math> v </math> is the volume per mol, and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point, and <math> v_c </math> is the critical volume per mol. | where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math> v </math> is the volume per mol, and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point, and <math> v_c </math> is the critical volume per mol. | ||
At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to | At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to <ref>For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout] produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].</ref> | ||
:<math>a = \frac{27R^2T_c^2}{64P_c}</math> | :<math>a = \frac{27R^2T_c^2}{64P_c}</math> | ||
| Line 13: | Line 13: | ||
and | and | ||
:<math>c= \frac{3RT_c}{8P_c}-v_c</math> | :<math>c= \frac{3RT_c}{8P_c}-v_c</math> | ||
==References== | ==References== | ||
<references/> | <references/> | ||
[[category: equations of state]] | [[category: equations of state]] | ||
Revision as of 17:22, 20 November 2009
The Clausius equation of state, proposed in 1880 by Rudolf Julius Emanuel Clausius [1] [2] is given by (Eq. 1 [3])
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ p + \frac{a}{T(v+c)^2}\right] (v-b) =RT.}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v } is the volume per mol, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} is the molar gas constant. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} is the critical temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_c} is the pressure at the critical point, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_c } is the critical volume per mol.
At the critical point one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 } , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 } , which leads to [4]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = \frac{27R^2T_c^2}{64P_c}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= v_c - \frac{RT_c}{4P_c}}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c= \frac{3RT_c}{8P_c}-v_c}
References
- ↑ R. Clausius "Über das Verhalten der Kohlensäure in Bezug auf Druck, Volumen und Temperatur", Annalen der Physik und Chemie 9 pp. 337-357 (1880)
- ↑ R. Clausius "Ueber die theoretische Bestimmung des Dampfdruckes und der Volumina des Dampfes und der Flüssigkeit", Annalen der Physik und Chemie 14 pp. 279-290 (1881)
- ↑ E. Sarrau "Sur la compressibilité des fluides", Comptes Rendus des Séances de l'Académie des Sciences. Paris 101 pp. 941-944 (1885)
- ↑ For details see the Mathematica printout produced by Dr. John L. Hardwick.