Ising model: Difference between revisions
m (Ising Models moved to Ising model: Better name) |
m (→See also: Added an internal link.) |
||
Line 26: | Line 26: | ||
*[http://dx.doi.org/10.1016/0370-1573(88)90140-8 Walter Selke "The ANNNI model — Theoretical analysis and experimental application", Physics Reports '''170''' pp. 213-264 (1988)] | *[http://dx.doi.org/10.1016/0370-1573(88)90140-8 Walter Selke "The ANNNI model — Theoretical analysis and experimental application", Physics Reports '''170''' pp. 213-264 (1988)] | ||
==See also== | ==See also== | ||
*[[Critical exponents]] | |||
*[[Potts model]] | *[[Potts model]] | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1103/RevModPhys.39.883 S. G. Brush "History of the Lenz-Ising Model", Reviews of Modern Physics '''39''' pp. 883-893 (1967)] | #[http://dx.doi.org/10.1103/RevModPhys.39.883 S. G. Brush "History of the Lenz-Ising Model", Reviews of Modern Physics '''39''' pp. 883-893 (1967)] | ||
#[http://dx.doi.org/10.1007/s00407-004-0088-3 Martin Niss "History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena", Archive for History of Exact Sciences '''59''' pp. 267-318 (2005)] | #[http://dx.doi.org/10.1007/s00407-004-0088-3 Martin Niss "History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena", Archive for History of Exact Sciences '''59''' pp. 267-318 (2005)] | ||
[[Category: Models]] | [[Category: Models]] |
Revision as of 16:49, 30 November 2009
The Ising model is also known as the Lenz-Ising model. For a history of the Lenz-Ising model see Refs. 1 and 2. The Ising model is commonly defined over an ordered lattice. Each site of the lattice can adopt two states, . Note that sometimes these states are referred to as spins and the values are referred to as down and up respectively.
The energy of the system is the sum of pair interactions between nearest neighbors.
where is the Boltzmann constant, is the temperature, indicates that the sum is performed over nearest neighbors, and indicates the state of the i-th site, and is the coupling constant.
1-dimensional Ising model
- 1-dimensional Ising model (exact solution)
2-dimensional Ising model
Solved by Lars Onsager in 1944. Rudolf Peierls had previously shown (1935) that, contrary to the one-dimensional case, the two-dimensional model must have a phase transition.
- Lars Onsager "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition", Physical Review 65 pp. 117 - 149 (1944)
- M. Kac and J. C. Ward "A Combinatorial Solution of the Two-Dimensional Ising Model", Physical Review 88 pp. 1332-1337 (1952)
- Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 7 (freely available pdf)
3-dimensional Ising model
Sorin Istrail has shown that the solution of Ising's model cannot be extended into three dimensions for any lattice:
- Three-dimensional proof for Ising model impossible, Sandia researcher claims to have shown
- Sorin Istrail "Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces", Proceedings of the thirty-second annual ACM symposium on Theory of computing pp. 87 - 96 (2000)
ANNNI model
The axial next-nearest neighbour Ising (ANNNI) model is used to study alloys, adsorbates, ferroelectrics, magnetic systems, and polytypes.