Hard sphere model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Slight change)
(Started a table for values of the Helmholtz energy function.)
Line 12: Line 12:
==First simulations  of hard spheres==
==First simulations  of hard spheres==
The hard sphere model, along with its two-dimensional manifestation [[hard disks]],  was one of the first ever systems studied using [[computer simulation techniques]] with a view
The hard sphere model, along with its two-dimensional manifestation [[hard disks]],  was one of the first ever systems studied using [[computer simulation techniques]] with a view
to understanding the thermodynamics of the fluid and solid phases and their corresponding [[Phase transitions | phase transition]]. The following are a sample of some of the very first works:
to understanding the thermodynamics of the fluid and solid phases and their corresponding [[Phase transitions | phase transition]]
*[http://dx.doi.org/10.1063/1.1740207 Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics '''22''' pp. 881-884  (1954)]
<ref>[http://dx.doi.org/10.1063/1.1740207 Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics '''22''' pp. 881-884  (1954)]</ref>
*[http://dx.doi.org/10.1063/1.1743956    W. W. Wood and J. D. Jacobson  "Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres", Journal of Chemical Physics '''27''' pp. 1207-1208 (1957)]
<ref>[http://dx.doi.org/10.1063/1.1743956    W. W. Wood and J. D. Jacobson  "Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres", Journal of Chemical Physics '''27''' pp. 1207-1208 (1957)]</ref>
*[http://dx.doi.org/10.1063/1.1743957    B. J. Alder and T. E. Wainwright "Phase Transition for a Hard Sphere System", Journal of Chemical Physics '''27''' pp. 1208-1209 (1957)]
<ref>[http://dx.doi.org/10.1063/1.1743957    B. J. Alder and T. E. Wainwright "Phase Transition for a Hard Sphere System", Journal of Chemical Physics '''27''' pp. 1208-1209 (1957)]</ref>


==Fluid phase radial distribution function==
==Fluid phase radial distribution function==
The following are a series of plots of the hard sphere [[radial distribution function]] (the [[total correlation function]] data was produced using the [http://www.vscht.cz/fch/software/hsmd/hspline-8-2004.zip computer code] written by [http://www.vscht.cz/fch/en/people/Jiri.Kolafa.html Jiří Kolafa]). The horizontal axis is in units of <math>\sigma</math> where <math>\sigma</math> is set to be 1. Click on image of interest to see a larger view.
The following are a series of plots of the hard sphere [[radial distribution function]] <ref>The [[total correlation function]] data was produced using the [http://www.vscht.cz/fch/software/hsmd/hspline-8-2004.zip computer code] written by [http://www.vscht.cz/fch/en/people/Jiri.Kolafa.html Jiří Kolafa]</ref>. The horizontal axis is in units of <math>\sigma</math> where <math>\sigma</math> is set to be 1. Click on image of interest to see a larger view.
:{| border="1"
:{| border="1"
|-  
|-  
Line 27: Line 27:
|<math>\rho=0.8</math>  [[Image:HS_0.8_rdf.png|center|220px]] ||<math>\rho=0.85</math>  [[Image:HS_0.85_rdf.png|center|220px]]  ||  <math>\rho=0.9</math> [[Image:HS_0.9_rdf.png|center|220px]]
|<math>\rho=0.8</math>  [[Image:HS_0.8_rdf.png|center|220px]] ||<math>\rho=0.85</math>  [[Image:HS_0.85_rdf.png|center|220px]]  ||  <math>\rho=0.9</math> [[Image:HS_0.9_rdf.png|center|220px]]
|}
|}
The value of the radial distribution at contact, <math>{\mathrm g}(\sigma^+)</math>, can be used to calculate the [[pressure]] via the [[equations of state |equation of state]] (Ref 5 Eq. 1)
The value of the radial distribution at contact, <math>{\mathrm g}(\sigma^+)</math>, can be used to calculate the [[pressure]] via the [[equations of state |equation of state]] (Eq. 1 in <ref name="Tao1"> [http://dx.doi.org/10.1103/PhysRevA.46.8007 Fu-Ming Tao, Yuhua Song, and E. A. Mason "Derivative of the hard-sphere radial distribution function at contact", Physical Review A '''46''' pp. 8007-8008 (1992)]</ref>)
:<math>\frac{p}{\rho k_BT}= 1 + B_2 \rho {\mathrm g}(\sigma^+)</math>
:<math>\frac{p}{\rho k_BT}= 1 + B_2 \rho {\mathrm g}(\sigma^+)</math>
where the [[second virial coefficient]], <math>B_2</math>, is given by  
where the [[second virial coefficient]], <math>B_2</math>, is given by  
:<math>B_2 = \frac{2\pi}{3}\sigma^3</math>.
:<math>B_2 = \frac{2\pi}{3}\sigma^3</math>.
Carnahan and Starling (Ref. 6) provided the following expression for <math>{\mathrm g}(\sigma^+)</math> (Ref. 5 Eq. 3)
Carnahan and Starling <ref>[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres"  Journal of Chemical Physics '''51''' pp. 635-636 (1969)]</ref> provided the following expression for <math>{\mathrm g}(\sigma^+)</math> (Eq. 3 in <ref name="Tao1" > </ref>)
:<math>{\mathrm g}(\sigma^+)= \frac{1-\eta/2}{(1-\eta)^3}</math>
:<math>{\mathrm g}(\sigma^+)= \frac{1-\eta/2}{(1-\eta)^3}</math>
where <math>\eta</math> is the [[packing fraction]].
where <math>\eta</math> is the [[packing fraction]].


Over the years many groups have studied the radial distribution function of the hard sphere model:
Over the years many groups have studied the radial distribution function of the hard sphere model:
*[http://dx.doi.org/10.1063/1.1747854 John G. Kirkwood, Eugene K. Maun, and Berni J. Alder "Radial Distribution Functions and the Equation of State of a Fluid Composed of Rigid Spherical Molecules", Journal of Chemical Physics '''18''' pp. 1040- (1950)]
<ref>[http://dx.doi.org/10.1063/1.1747854 John G. Kirkwood, Eugene K. Maun, and Berni J. Alder "Radial Distribution Functions and the Equation of State of a Fluid Composed of Rigid Spherical Molecules", Journal of Chemical Physics '''18''' pp. 1040- (1950)]</ref>
*[http://dx.doi.org/10.1103/PhysRev.85.777  B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review '''85''' pp. 777 - 783 (1952)]
<ref>[http://dx.doi.org/10.1103/PhysRev.85.777  B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review '''85''' pp. 777 - 783 (1952)]</ref>
*[http://dx.doi.org/10.1063/1.1742004 B. J. Alder, S. P. Frankel, and V. A. Lewinson "Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid",  Journal of Chemical Physics '''23''' pp. 417- (1955)]
<ref>[http://dx.doi.org/10.1063/1.1742004 B. J. Alder, S. P. Frankel, and V. A. Lewinson "Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid",  Journal of Chemical Physics '''23''' pp. 417- (1955)]</ref>
*[http://dx.doi.org/10.1063/1.1727245 Francis H. Ree, R. Norris Keeler, and Shaun L. McCarthy "Radial Distribution Function of Hard Spheres", Journal of Chemical Physics '''44''' pp. 3407- (1966)]
<ref>[http://dx.doi.org/10.1063/1.1727245 Francis H. Ree, R. Norris Keeler, and Shaun L. McCarthy "Radial Distribution Function of Hard Spheres", Journal of Chemical Physics '''44''' pp. 3407- (1966)]</ref>
*[http://dx.doi.org/10.1080/00268977000101421 W. R. Smith and D. Henderson "Analytical representation of the Percus-Yevick hard-sphere radial distribution function", Molecular Physics '''19''' pp. 411-415 (1970)]
<ref>[http://dx.doi.org/10.1080/00268977000101421 W. R. Smith and D. Henderson "Analytical representation of the Percus-Yevick hard-sphere radial distribution function", Molecular Physics '''19''' pp. 411-415 (1970)]</ref>
*[http://dx.doi.org/10.1080/00268977100101331 J. A. Barker and D. Henderson "Monte Carlo values for the radial distribution function of a system of fluid hard spheres", Molecular Physics '''21''' pp. 187-191  (1971)]
<ref>[http://dx.doi.org/10.1080/00268977100101331 J. A. Barker and D. Henderson "Monte Carlo values for the radial distribution function of a system of fluid hard spheres", Molecular Physics '''21''' pp. 187-191  (1971)]</ref>
*[http://dx.doi.org/10.1080/00268977700102241 J. M. Kincaid and J. J. Weis "Radial distribution function of a hard-sphere solid", Molecular Physics '''34''' pp. 931-938 (1977)]
<ref>[http://dx.doi.org/10.1080/00268977700102241 J. M. Kincaid and J. J. Weis "Radial distribution function of a hard-sphere solid", Molecular Physics '''34''' pp. 931-938 (1977)]</ref>
*[http://dx.doi.org/10.1103/PhysRevA.43.5418      S. Bravo Yuste and A. Santos "Radial distribution function for hard spheres", Physical Review A '''43''' pp. 5418-5423 (1991)]
<ref>[http://dx.doi.org/10.1103/PhysRevA.43.5418      S. Bravo Yuste and A. Santos "Radial distribution function for hard spheres", Physical Review A '''43''' pp. 5418-5423 (1991)]</ref>
*[http://dx.doi.org/10.1080/00268979400100491 Jaeeon Chang and Stanley I. Sandler "A real function representation for the structure of the hard-sphere fluid", Molecular Physics '''81''' pp. 735-744 (1994)]
<ref>[http://dx.doi.org/10.1080/00268979400100491 Jaeeon Chang and Stanley I. Sandler "A real function representation for the structure of the hard-sphere fluid", Molecular Physics '''81''' pp. 735-744 (1994)]</ref>
*[http://dx.doi.org/10.1063/1.1979488 Andrij Trokhymchuk, Ivo Nezbeda and Jan Jirsák "Hard-sphere radial distribution function again",  Journal of Chemical Physics '''123''' 024501 (2005)]
<ref>[http://dx.doi.org/10.1063/1.1979488 Andrij Trokhymchuk, Ivo Nezbeda and Jan Jirsák "Hard-sphere radial distribution function again",  Journal of Chemical Physics '''123''' 024501 (2005)]</ref>
*[http://dx.doi.org/10.1063/1.2201699 M. López de Haro, A. Santos and S. B. Yuste "On the radial distribution function of a hard-sphere fluid",  Journal of Chemical Physics '''124'''  236102 (2006)]
<ref>[http://dx.doi.org/10.1063/1.2201699 M. López de Haro, A. Santos and S. B. Yuste "On the radial distribution function of a hard-sphere fluid",  Journal of Chemical Physics '''124'''  236102 (2006)]</ref>


==Direct correlation function==
==Direct correlation function==
For the [[direct correlation function]] see:
For the [[direct correlation function]] see:
*[http://dx.doi.org/10.1080/00268970701725021 C. F. Tejero and M. López De Haro "Direct correlation function of the hard-sphere fluid", Molecular Physics '''105''' pp. 2999-3004 (2007)]
<ref>[http://dx.doi.org/10.1080/00268970701725021 C. F. Tejero and M. López De Haro "Direct correlation function of the hard-sphere fluid", Molecular Physics '''105''' pp. 2999-3004 (2007)]</ref>
*[http://dx.doi.org/10.1080/00268970902784934 Matthew Dennison, Andrew J. Masters, David L. Cheung, and Michael P. Allen "Calculation of direct correlation function for hard particles using a virial expansion", Molecular Physics pp. 375-382  (2009)]
<ref>[http://dx.doi.org/10.1080/00268970902784934 Matthew Dennison, Andrew J. Masters, David L. Cheung, and Michael P. Allen "Calculation of direct correlation function for hard particles using a virial expansion", Molecular Physics pp. 375-382  (2009)]</ref>


==Bridge function==
==Bridge function==
Details of the [[bridge function]] for hard sphere can be found in the following publication
Details of the [[bridge function]] for hard sphere can be found in the following publication
*[http://dx.doi.org/10.1080/00268970210136357 Jiri Kolafa, Stanislav Labik and Anatol Malijevsky "The bridge function of hard spheres by direct inversion of computer simulation data", Molecular Physics '''100''' pp. 2629-2640 (2002)]
<ref>[http://dx.doi.org/10.1080/00268970210136357 Jiri Kolafa, Stanislav Labik and Anatol Malijevsky "The bridge function of hard spheres by direct inversion of computer simulation data", Molecular Physics '''100''' pp. 2629-2640 (2002)]</ref>
==Fluid-solid transition==
==Fluid-solid transition==
The hard sphere system undergoes a [[Solid-liquid phase transitions |fluid-solid]] [[First-order transitions |first order transition]] (Ref. 1).
The hard sphere system undergoes a [[Solid-liquid phase transitions |fluid-solid]] [[First-order transitions |first order transition]] <ref name="HooverRee">[http://dx.doi.org/10.1063/1.1670641    William G. Hoover and Francis H. Ree "Melting Transition and Communal Entropy for Hard Spheres", Journal of Chemical Physics '''49''' pp. 3609-3617  (1968)]</ref>
The fluid-solid coexistence densities (<math>\rho^* = \rho \sigma^3</math>) are given by
The fluid-solid coexistence densities (<math>\rho^* = \rho \sigma^3</math>) are given by
:{| border="1"
:{| border="1"
Line 63: Line 63:
| <math>\rho^*_{\mathrm {solid}}</math> || <math>\rho^*_{\mathrm {fluid}}</math> || Reference
| <math>\rho^*_{\mathrm {solid}}</math> || <math>\rho^*_{\mathrm {fluid}}</math> || Reference
|-  
|-  
| 1.041|| 0.945 ||Ref. 1
| 1.041|| 0.945 || <ref name="HooverRee"> </ref>
|-  
|-  
| 1.0376|| 0.9391 ||Ref. 2
| 1.0376|| 0.9391 || <ref name="FrenkelSmitBook">Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications", Second Edition (2002) (ISBN 0-12-267351-4) p. 261.</ref>
|-  
|-  
| 1.0367(10) || 0.9387(10) ||Ref. 3
| 1.0367(10) || 0.9387(10) || <ref name="Fortini">[http://dx.doi.org/10.1088/0953-8984/18/28/L02  Andrea Fortini and Marjolein Dijkstra "Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement", Journal of Physics: Condensed Matter '''18''' pp. L371-L378 (2006)]</ref>
|-  
|-  
| 1.0372 || 0.9387  || Ref. 4
| 1.0372 || 0.9387  || <ref name="VegaNoya"> [http://dx.doi.org/10.1063/1.2790426 Carlos Vega and Eva G. Noya "Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach", Journal of Chemical Physics '''127''' 154113 (2007)]</ref>
|-  
|-  
| 1.0369(33) || 0.9375(14) || Ref. 5
| 1.0369(33) || 0.9375(14) || <ref name="Noya"> [http://dx.doi.org/10.1063/1.2901172 Eva G. Noya, Carlos Vega, and Enrique de Miguel "Determination of the melting point of hard spheres from direct coexistence simulation methods", Journal of Chemical Physics '''128''' 154507 (2008)]</ref>
|-  
|-  
| 1.037 || 0.938 || Ref. 6
| 1.037 || 0.938 || <ref>[http://dx.doi.org/10.1063/1.476396 Ruslan L. Davidchack and Brian B. Laird "Simulation of the hard-sphere crystal–melt interface",  Journal of Chemical Physics '''108''' pp.  9452-9462 (1998)]</ref>
|-  
|-  
| 1.035(3) || 0.936(2) || Ref. 9
| 1.035(3) || 0.936(2) || <ref name="Miguel"> [http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]</ref>
|}
|}
The coexistence [[pressure]] is given by  
The coexistence [[pressure]] is given by  
Line 82: Line 82:
| <math>p (k_BT/\sigma^3) </math> || Reference
| <math>p (k_BT/\sigma^3) </math> || Reference
|-  
|-  
| 11.567|| Ref. 2
| 11.567|| <ref name="FrenkelSmitBook"> </ref>
|-  
|-  
| 11.57(10) || Ref. 3
| 11.57(10) || <ref name="Fortini"> </ref>
|-  
|-  
| 11.54(4) || Ref. 5
| 11.54(4) || <ref name="Noya"> </ref>
|-  
|-  
| 11.50(9) || Ref. 7
| 11.50(9) || <ref>[http://dx.doi.org/10.1103/PhysRevLett.85.5138 N. B. Wilding and A. D. Bruce "Freezing by Monte Carlo Phase Switch", Physical Review Letters '''85''' pp. 5138-5141 (2000)]</ref>
|-  
|-  
| 11.55(11) || Ref. 8
| 11.55(11) || <ref>[http://dx.doi.org/10.1088/0953-8984/9/41/006 Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of  Physics: Condensed Matter '''9''' pp. 8591-8599 (1997)]</ref>
|-  
|-  
| 11.48(11) || Ref. 9
| 11.48(11) || <ref name="Miguel"> </ref>
|}
|}
The coexistence [[chemical potential]] is given by  
The coexistence [[chemical potential]] is given by  
Line 99: Line 99:
| <math>\mu (k_BT) </math> || Reference
| <math>\mu (k_BT) </math> || Reference
|-  
|-  
| 15.980(11) || Ref. 9
| 15.980(11) || <ref name="Miguel"> </ref>
|}
|}
The [[Helmholtz energy function]] (in units of <math>Nk_BT</math>) is given by  
The [[Helmholtz energy function]] (in units of <math>Nk_BT</math>) is given by  
Line 106: Line 106:
| <math>A_{\mathrm {solid}}</math> || <math>A_{\mathrm {fluid}}</math> || Reference
| <math>A_{\mathrm {solid}}</math> || <math>A_{\mathrm {fluid}}</math> || Reference
|-  
|-  
| 4.887(3) || 3.719(8) ||Ref. 9
| 4.887(3) || 3.719(8) || <ref name="Miguel"> </ref>
|}
==Helmholtz energy function==
Values for the [[Helmholtz energy function]] (<math>A</math>) are given in the following Table:
:{| border="1"
|-
| <math>\rho^*</math> || <math>A/(Nk_BT)</math>|| Reference
|-
| 1.04086 || 4.959 || Table VI <ref name="VegaNoya"> </ref>
|-
| 1.099975 || 5.631 || Table VI <ref name="VegaNoya"> </ref>
|-
| 1.150000 || 6.274 || Table VI <ref name="VegaNoya"> </ref>
|}
|}
#[http://dx.doi.org/10.1063/1.1670641    William G. Hoover and Francis H. Ree "Melting Transition and Communal Entropy for Hard Spheres", Journal of Chemical Physics '''49''' pp. 3609-3617  (1968)]
#Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications", Second Edition (2002) (ISBN 0-12-267351-4) p. 261.
#[http://dx.doi.org/10.1088/0953-8984/18/28/L02  Andrea Fortini and Marjolein Dijkstra "Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement", Journal of Physics: Condensed Matter '''18''' pp. L371-L378 (2006)]
#[http://dx.doi.org/10.1063/1.2790426 Carlos Vega and Eva G. Noya "Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach", Journal of Chemical Physics '''127''' 154113 (2007)]
#[http://dx.doi.org/10.1063/1.2901172 Eva G. Noya, Carlos Vega, and Enrique de Miguel "Determination of the melting point of hard spheres from direct coexistence simulation methods", Journal of Chemical Physics '''128''' 154507 (2008)]
#[http://dx.doi.org/10.1063/1.476396 Ruslan L. Davidchack and Brian B. Laird "Simulation of the hard-sphere crystal–melt interface",  Journal of Chemical Physics '''108''' pp.  9452-9462 (1998)]
#[http://dx.doi.org/10.1103/PhysRevLett.85.5138 N. B. Wilding and A. D. Bruce "Freezing by Monte Carlo Phase Switch", Physical Review Letters '''85''' pp. 5138-5141 (2000)]
#[http://dx.doi.org/10.1088/0953-8984/9/41/006 Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of  Physics: Condensed Matter '''9''' pp. 8591-8599 (1997)]
#[http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]
==Solid structure==
==Solid structure==
The [http://mathworld.wolfram.com/KeplerConjecture.html Kepler conjecture] states that the optimal packing for three dimensional spheres is either cubic or hexagonal close [[Lattice Structures | packing]], both of which have maximum densities of <math>\pi/(3 \sqrt{2}) \approx 74.048%</math>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable (Ref. 3).
The [http://mathworld.wolfram.com/KeplerConjecture.html Kepler conjecture] states that the optimal packing for three dimensional spheres is either cubic or hexagonal close [[Lattice Structures | packing]], both of which have maximum densities of <math>\pi/(3 \sqrt{2}) \approx 74.048%</math> <ref>[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]</ref>
#[http://dx.doi.org/10.1038/26609 Neil J. A. Sloane "Kepler's conjecture confirmed", Nature '''395''' pp. 435-436 (1998)]
<ref>[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E  '''52''' pp. 3632-3636 (1995)]</ref>. However, for hard spheres at close packing the [[Building up a face centered cubic lattice |face centred cubic]] phase is the more stable
#[http://dx.doi.org/10.1103/PhysRevE.52.3632 C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E  '''52''' pp. 3632-3636 (1995)]
<ref>[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325 - 338 (1997)]</ref>
#[http://dx.doi.org/10.1039/a701761h Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions '''106''' pp. 325 - 338 (1997)]
*See also: [[Equations of state for crystals of hard spheres]]
*See also: [[Equations of state for crystals of hard spheres]]


Line 141: Line 142:
* [[Hard hyperspheres]]
* [[Hard hyperspheres]]
== Experimental results ==
== Experimental results ==
Pusey and  van Megen used a suspension of PMMA particles of radius 305 <math>\pm</math>10 nm,  suspended in poly-12-hydroxystearic acid:
Pusey and  van Megen used a suspension of PMMA particles of radius 305 <math>\pm</math>10 nm,  suspended in poly-12-hydroxystearic acid <ref>[http://dx.doi.org/10.1038/320340a0 P. N. Pusey and W. van Megen "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres", Nature '''320''' pp. 340-342 (1986)]</ref>
*[http://dx.doi.org/10.1038/320340a0 P. N. Pusey and W. van Megen "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres", Nature '''320''' pp. 340 - 342 (1986)]
For results obtained from the [http://exploration.grc.nasa.gov/expr2/cdot.html Colloidal Disorder - Order Transition] (CDOT) experiments performed on-board the Space Shuttles ''Columbia'' and ''Discovery'' see Ref. <ref>[http://dx.doi.org/10.1016/S0261-3069(01)00015-2 Z. Chenga,  P. M. Chaikina, W. B. Russelb, W. V. Meyerc, J. Zhub, R. B. Rogersc and R. H. Ottewilld, "Phase diagram of hard spheres", Materials & Design  '''22''' pp. 529-534 (2001)]</ref>
For results obtained from the [http://exploration.grc.nasa.gov/expr2/cdot.html Colloidal Disorder - Order Transition] (CDOT) experiments performed on-board the Space Shuttles ''Columbia'' and ''Discovery'' see Ref. 3.
==References==
==Interesting reading==
<references/>
'''Related reading'''
*[http://dx.doi.org/10.1007/978-3-540-78767-9 "Theory and Simulation of Hard-Sphere Fluids and Related Systems", Lecture Notes in Physics  '''753/2008'''  Springer  (2008)]
*[http://dx.doi.org/10.1007/978-3-540-78767-9 "Theory and Simulation of Hard-Sphere Fluids and Related Systems", Lecture Notes in Physics  '''753/2008'''  Springer  (2008)]
==References==
#[http://dx.doi.org/10.1088/0953-8984/9/41/006 Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of  Physics: Condensed Matter '''9''' pp. 8591-8599    (1997)]
#[http://dx.doi.org/10.1088/0953-8984/10/20/006 Robin J. Speedy "Pressure and entropy of hard-sphere crystals", Journal of  Physics: Condensed Matter '''10''' pp.    4387-4391  (1998)]
#[http://dx.doi.org/10.1016/S0261-3069(01)00015-2 Z. Chenga,  P. M. Chaikina, W. B. Russelb, W. V. Meyerc, J. Zhub, R. B. Rogersc and R. H. Ottewilld, "Phase diagram of hard spheres", Materials & Design  '''22''' pp. 529-534 (2001)]
#[http://dx.doi.org/10.1080/00268970701628423 W. R. Smith,  D. J. Henderson,  P. J. Leonard, J. A. Barker and E. W. Grundke "Fortran codes for the correlation functions of hard sphere fluids", Molecular Physics '''106''' pp. 3-7 (2008)]
#[http://dx.doi.org/10.1103/PhysRevA.46.8007 Fu-Ming Tao, Yuhua Song, and E. A. Mason "Derivative of the hard-sphere radial distribution function at contact", Physical Review A '''46''' pp. 8007-8008 (1992)]
#[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres"  Journal of Chemical Physics '''51''' pp. 635-636 (1969)]
==External links==
==External links==
*[http://www.smac.lps.ens.fr/index.php/Programs_Chapter_2:_Hard_disks_and_spheres Hard disks and spheres] computer code on SMAC-wiki.
*[http://www.smac.lps.ens.fr/index.php/Programs_Chapter_2:_Hard_disks_and_spheres Hard disks and spheres] computer code on SMAC-wiki.
[[Category:Models]]
[[Category:Models]]
[[category: hard sphere]]
[[category: hard sphere]]

Revision as of 17:12, 18 December 2009

The hard sphere model is defined as

where is the intermolecular pair potential between two spheres at a distance , and is the diameter of the sphere. The hard sphere model can be considered to be a special case of the hard ellipsoid model, where each of the semi-axes has the same length, .

First simulations of hard spheres

The hard sphere model, along with its two-dimensional manifestation hard disks, was one of the first ever systems studied using computer simulation techniques with a view to understanding the thermodynamics of the fluid and solid phases and their corresponding phase transition [1] [2] [3]

Fluid phase radial distribution function

The following are a series of plots of the hard sphere radial distribution function [4]. The horizontal axis is in units of where is set to be 1. Click on image of interest to see a larger view.

The value of the radial distribution at contact, , can be used to calculate the pressure via the equation of state (Eq. 1 in [5])

where the second virial coefficient, , is given by

.

Carnahan and Starling [6] provided the following expression for (Eq. 3 in [5])

where is the packing fraction.

Over the years many groups have studied the radial distribution function of the hard sphere model: [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]

Direct correlation function

For the direct correlation function see: [18] [19]

Bridge function

Details of the bridge function for hard sphere can be found in the following publication [20]

Fluid-solid transition

The hard sphere system undergoes a fluid-solid first order transition [21] The fluid-solid coexistence densities () are given by

Reference
1.041 0.945 [21]
1.0376 0.9391 [22]
1.0367(10) 0.9387(10) [23]
1.0372 0.9387 [24]
1.0369(33) 0.9375(14) [25]
1.037 0.938 [26]
1.035(3) 0.936(2) [27]

The coexistence pressure is given by

Reference
11.567 [22]
11.57(10) [23]
11.54(4) [25]
11.50(9) [28]
11.55(11) [29]
11.48(11) [27]

The coexistence chemical potential is given by

Reference
15.980(11) [27]

The Helmholtz energy function (in units of ) is given by

Reference
4.887(3) 3.719(8) [27]

Helmholtz energy function

Values for the Helmholtz energy function () are given in the following Table:

Reference
1.04086 4.959 Table VI [24]
1.099975 5.631 Table VI [24]
1.150000 6.274 Table VI [24]

Solid structure

The Kepler conjecture states that the optimal packing for three dimensional spheres is either cubic or hexagonal close packing, both of which have maximum densities of [30] [31]. However, for hard spheres at close packing the face centred cubic phase is the more stable [32]

Equations of state

Main article: Equations of state for hard spheres

Virial coefficients

Main article: Hard sphere: virial coefficients

Mixtures

Related systems

Hard spheres in other dimensions:

Experimental results

Pusey and van Megen used a suspension of PMMA particles of radius 305 10 nm, suspended in poly-12-hydroxystearic acid [33] For results obtained from the Colloidal Disorder - Order Transition (CDOT) experiments performed on-board the Space Shuttles Columbia and Discovery see Ref. [34]

References

  1. Marshall N. Rosenbluth and Arianna W. Rosenbluth "Further Results on Monte Carlo Equations of State", Journal of Chemical Physics 22 pp. 881-884 (1954)
  2. W. W. Wood and J. D. Jacobson "Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres", Journal of Chemical Physics 27 pp. 1207-1208 (1957)
  3. B. J. Alder and T. E. Wainwright "Phase Transition for a Hard Sphere System", Journal of Chemical Physics 27 pp. 1208-1209 (1957)
  4. The total correlation function data was produced using the computer code written by Jiří Kolafa
  5. Jump up to: 5.0 5.1 Fu-Ming Tao, Yuhua Song, and E. A. Mason "Derivative of the hard-sphere radial distribution function at contact", Physical Review A 46 pp. 8007-8008 (1992)
  6. N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics 51 pp. 635-636 (1969)
  7. John G. Kirkwood, Eugene K. Maun, and Berni J. Alder "Radial Distribution Functions and the Equation of State of a Fluid Composed of Rigid Spherical Molecules", Journal of Chemical Physics 18 pp. 1040- (1950)
  8. B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review 85 pp. 777 - 783 (1952)
  9. B. J. Alder, S. P. Frankel, and V. A. Lewinson "Radial Distribution Function Calculated by the Monte-Carlo Method for a Hard Sphere Fluid", Journal of Chemical Physics 23 pp. 417- (1955)
  10. Francis H. Ree, R. Norris Keeler, and Shaun L. McCarthy "Radial Distribution Function of Hard Spheres", Journal of Chemical Physics 44 pp. 3407- (1966)
  11. W. R. Smith and D. Henderson "Analytical representation of the Percus-Yevick hard-sphere radial distribution function", Molecular Physics 19 pp. 411-415 (1970)
  12. J. A. Barker and D. Henderson "Monte Carlo values for the radial distribution function of a system of fluid hard spheres", Molecular Physics 21 pp. 187-191 (1971)
  13. J. M. Kincaid and J. J. Weis "Radial distribution function of a hard-sphere solid", Molecular Physics 34 pp. 931-938 (1977)
  14. S. Bravo Yuste and A. Santos "Radial distribution function for hard spheres", Physical Review A 43 pp. 5418-5423 (1991)
  15. Jaeeon Chang and Stanley I. Sandler "A real function representation for the structure of the hard-sphere fluid", Molecular Physics 81 pp. 735-744 (1994)
  16. Andrij Trokhymchuk, Ivo Nezbeda and Jan Jirsák "Hard-sphere radial distribution function again", Journal of Chemical Physics 123 024501 (2005)
  17. M. López de Haro, A. Santos and S. B. Yuste "On the radial distribution function of a hard-sphere fluid", Journal of Chemical Physics 124 236102 (2006)
  18. C. F. Tejero and M. López De Haro "Direct correlation function of the hard-sphere fluid", Molecular Physics 105 pp. 2999-3004 (2007)
  19. Matthew Dennison, Andrew J. Masters, David L. Cheung, and Michael P. Allen "Calculation of direct correlation function for hard particles using a virial expansion", Molecular Physics pp. 375-382 (2009)
  20. Jiri Kolafa, Stanislav Labik and Anatol Malijevsky "The bridge function of hard spheres by direct inversion of computer simulation data", Molecular Physics 100 pp. 2629-2640 (2002)
  21. Jump up to: 21.0 21.1 William G. Hoover and Francis H. Ree "Melting Transition and Communal Entropy for Hard Spheres", Journal of Chemical Physics 49 pp. 3609-3617 (1968)
  22. Jump up to: 22.0 22.1 Daan Frenkel and Berend Smit "Understanding Molecular Simulation: From Algorithms to Applications", Second Edition (2002) (ISBN 0-12-267351-4) p. 261.
  23. Jump up to: 23.0 23.1 Andrea Fortini and Marjolein Dijkstra "Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement", Journal of Physics: Condensed Matter 18 pp. L371-L378 (2006)
  24. Jump up to: 24.0 24.1 24.2 24.3 Carlos Vega and Eva G. Noya "Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach", Journal of Chemical Physics 127 154113 (2007)
  25. Jump up to: 25.0 25.1 Eva G. Noya, Carlos Vega, and Enrique de Miguel "Determination of the melting point of hard spheres from direct coexistence simulation methods", Journal of Chemical Physics 128 154507 (2008)
  26. Ruslan L. Davidchack and Brian B. Laird "Simulation of the hard-sphere crystal–melt interface", Journal of Chemical Physics 108 pp. 9452-9462 (1998)
  27. Jump up to: 27.0 27.1 27.2 27.3 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics 129 214112 (2008)
  28. N. B. Wilding and A. D. Bruce "Freezing by Monte Carlo Phase Switch", Physical Review Letters 85 pp. 5138-5141 (2000)
  29. Robin J. Speedy "Pressure of the metastable hard-sphere fluid", Journal of Physics: Condensed Matter 9 pp. 8591-8599 (1997)
  30. Neil J. A. Sloane "Kepler's conjecture confirmed", Nature 395 pp. 435-436 (1998)
  31. C. F. Tejero, M. S. Ripoll, and A. Pérez "Pressure of the hard-sphere solid", Physical Review E 52 pp. 3632-3636 (1995)
  32. Leslie V. Woodcock "Computation of the free energy for alternative crystal structures of hard spheres", Faraday Discussions 106 pp. 325 - 338 (1997)
  33. P. N. Pusey and W. van Megen "Phase behaviour of concentrated suspensions of nearly hard colloidal spheres", Nature 320 pp. 340-342 (1986)
  34. Z. Chenga, P. M. Chaikina, W. B. Russelb, W. V. Meyerc, J. Zhub, R. B. Rogersc and R. H. Ottewilld, "Phase diagram of hard spheres", Materials & Design 22 pp. 529-534 (2001)

Related reading

External links