Ornstein-Zernike relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 1: Line 1:
Notation:
Notation:
*<math>g(r)</math> is the [[pair distribution function]].
*<math>g(r)</math> is the [[Pair distribution function | pair distribution function]].
*<math>\Phi(r)</math> is the [[pair potential]] acting between pairs.
*<math>\Phi(r)</math> is the [[Pair potential | pair potential]] acting between pairs.
*<math>h(1,2)</math> is the [[total correlation function]] <math>h(1,2) \equiv  g(r) -1</math>.
*<math>h(1,2)</math> is the [[Total correlation function | total correlation function]] <math>h(1,2) \equiv  g(r) -1</math>.
*<math>c(1,2)</math> is the [[direct correlation function]].
*<math>c(1,2)</math> is the [[Direct correlation function | direct correlation function]].
*<math>\gamma (r)</math> is the [[indirect correlation function | indirect]] (or ''series'' or  ''chain'') correlation function <math>\gamma (r) \equiv  h(r) - c(r)</math>.
*<math>\gamma (r)</math> is the [[Indirect correlation function | indirect]] (or ''series'' or  ''chain'') correlation function <math>\gamma (r) \equiv  h(r) - c(r)</math>.
*<math>y(r_{12})</math> is the [[cavity correlation function]]<math>y(r)  \equiv g(r) /e^{-\beta \Phi(r)}</math>  
*<math>y(r_{12})</math> is the [[Cavity correlation function | cavity correlation function]]<math>y(r)  \equiv g(r) /e^{-\beta \Phi(r)}</math>  
*<math>B(r)</math> is the [[Closures | bridge]] function.
*<math>B(r)</math> is the [[Closures | bridge]] function.
*<math>\omega(r)</math> is the [[thermal potential]], <math>\omega(r) \equiv \gamma(r) + B(r)</math>.
*<math>\omega(r)</math> is the [[Thermal potential | thermal potential]], <math>\omega(r) \equiv \gamma(r) + B(r)</math>.
*<math>f(r)</math> is the [[Mayer f-function]], defined as <math>f(r) \equiv  e^{-\beta \Phi(r)} -1</math>.
*<math>f(r)</math> is the [[Mayer f-function]], defined as <math>f(r) \equiv  e^{-\beta \Phi(r)} -1</math>.



Revision as of 11:36, 28 February 2007

Notation:

  • is the pair distribution function.
  • is the pair potential acting between pairs.
  • is the total correlation function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle h(1,2)\equiv g(r)-1} .
  • is the direct correlation function.
  • is the indirect (or series or chain) correlation function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \gamma (r)\equiv h(r)-c(r)} .
  • is the cavity correlation functionFailed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y(r)\equiv g(r)/e^{-\beta \Phi (r)}}
  • is the bridge function.
  • is the thermal potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega(r) \equiv \gamma(r) + B(r)} .
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)} is the Mayer f-function, defined as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r) \equiv e^{-\beta \Phi(r)} -1} .


The Ornstein-Zernike relation (OZ) integral equation is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=h\left[c\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h[c]} denotes a functional of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} . This relation is exact. This is complemented by the closure relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=c\left[h\right]}

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} . Because of this Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} must be determined self-consistently. This need for self-consistency is characteristic of all many-body problems. (Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3}

If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) \equiv h(r) - c(r) = \rho \int h(r')~c(|r - r'|) dr'}

In words, this equation (Hansen and McDonald, section 5.2 p. 107)

``...describes the fact that the total correlation between particles 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)}
, 
is due in part to the direct correlation between 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)}
, but also to the indirect correlation,  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)}
, propagated via increasingly large numbers of intermediate particles."

Notice that this equation is basically a convolution, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h \equiv c + \rho h\otimes c }

(Note: the convolution operation written here as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} is more frequently written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) This can be seen by expanding the integral in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r)} (here truncated at the fourth iteration):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r) = c(r) + \rho \int c(|r - r'|) c(r') dr' + \rho^2 \int \int c(|r - r'|) c(|r' - r''|) c(r'') dr''dr' + \rho^3 \int\int\int c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''') dr'''dr''dr' + \rho^4 \int \int\int\int c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''') dr'''' dr'''dr''dr'}

etc. Diagrammatically this expression can be written as (Ref. 2):

where the bold lines connecting root points denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} functions, the blobs denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} functions. An arrow pointing from left to right indicates an uphill path from one root point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing particle labels. The OZ relation can be derived by performing a functional differentiation of the grand canonical distribution function (HM check this).

OZ equation in Fourier space

The OZ equation may be written in Fourier space as (Eq. 5 in Ref. 3):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} = (I - \rho \hat{c})^{-1} \hat{c} \rho \hat{c}}

The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly to:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} (k) = \frac{4 \pi}{k} \int_0^\infty r~\sin (kr) \gamma(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(r) dk}

Note:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{h}(0) = \int h(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{c}(0) = \int c(r) dr}

References

  1. L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 17 pp. 793- (1914)
  2. James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A 45 pp. 816 - 824 (1992)
  3. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)
  4. Hansen and MacDonald "Theory of Simple Liquids"