Liouville's theorem: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a reference.)
m (Fixed broken external link.)
 
Line 1: Line 1:
{{Stub-general}}
'''Liouville's theorem''' is an expression of the conservation of volume of [[phase space]] <ref>[http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1838_1_3_A26_0 J. Liouville "Note sur la Théorie de la Variation des constantes arbitraires", Journal de Mathématiques Pures et Appliquées,  Sér. I, '''3''' pp. 342-349 (1838)]</ref>:
'''Liouville's theorem''' is an expression of the conservation of volume of [[phase space]]:


:<math>\frac{d\varrho}{dt}= \sum_{i=1}^{s} \left( \frac{\partial \varrho}{\partial q_i} \dot{q_i}+ \frac{\partial \varrho}{\partial p_i} \dot{p_i} \right) =0 </math>
:<math>\frac{d\varrho}{dt}= \sum_{i=1}^{s} \left( \frac{\partial \varrho}{\partial q_i} \dot{q_i}+ \frac{\partial \varrho}{\partial p_i} \dot{p_i} \right) =0 </math>
Line 8: Line 7:
With time a volume element can change shape, but phase points neither enter nor leave the volume.
With time a volume element can change shape, but phase points neither enter nor leave the volume.
==References==
==References==
#[http://portail.mathdoc.fr/cgi-bin/jmpar.py?O=16382&E=00000350&N=8&CD=0&F=PDF J. Liouville "Note sur la Théorie de la Variation des constantes arbitraires", Journal de Mathématiques Pures et Appliquées,  Sér. I, '''3''' pp. 342-349 (1838)]
<references/>
[[category: statistical mechanics]]
[[category: statistical mechanics]]

Latest revision as of 13:21, 9 February 2010

Liouville's theorem is an expression of the conservation of volume of phase space [1]:

where is a distribution function , p is the generalised momenta and q are the generalised coordinates. With time a volume element can change shape, but phase points neither enter nor leave the volume.

References[edit]