Stress: Difference between revisions
m (Added a paper) |
Carl McBride (talk | contribs) m (→References: Added a new publication.) |
||
| Line 17: | Line 17: | ||
'''Related reading''' | '''Related reading''' | ||
*[http://dx.doi.org/10.1063/1.3245303 Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics '''131''' 154107 (2009)] | *[http://dx.doi.org/10.1063/1.3245303 Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics '''131''' 154107 (2009)] | ||
*[http://dx.doi.org/10.1063/1.3316134 G. C. Rossi and M. Testa "The stress tensor in thermodynamics and statistical mechanics", Journal of Chemical Physics '''132''' 074902 (2010)] | |||
[[category: classical mechanics]] | [[category: classical mechanics]] | ||
Revision as of 13:06, 17 February 2010
The stress is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbf F} = \sigma_{ij} {\mathbf A}}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbf F}} is the force, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbf A}} is the area, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{ij}} is the stress tensor, given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_{ij} \equiv \left[{\begin{matrix} \sigma _x & \tau _{xy} & \tau _{xz} \\ \tau _{yx} & \sigma _y & \tau _{yz} \\ \tau _{zx} & \tau _{zy} & \sigma _z \\ \end{matrix}}\right]}
where where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ \sigma _{x}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_{y}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_{z}} are normal stresses, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xy}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xz}} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{yz}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{zx}} , and are shear stresess.
References
Related reading
- Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics 131 154107 (2009)
- G. C. Rossi and M. Testa "The stress tensor in thermodynamics and statistical mechanics", Journal of Chemical Physics 132 074902 (2010)