Hard sphere: virial coefficients

From SklogWiki
Revision as of 11:58, 21 March 2007 by Carl McBride (talk | contribs)
Jump to navigation Jump to search
Virial / Dimension 2 3 4 5 6 7 8
0.782004... 0.625 0.506340... 0.414063... 0.340941... 0.282227... 0.234614...
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_4/B_2^3} 0.53223180... 0.2869495... 0.15184606... 0.0759724807... 0.03336314... 0.0098649662... -0.00255768...
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_5/B_2^4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_6/B_2^5}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_7/B_2^6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_8/B_2^7}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_9/B_2^8}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_10/B_2^9}

Virial coefficients of hard spheres and hard disks can be found in the following references.


References

  1. Stanislav Labík, Jirí Kolafa, and Anatol Malijevský, "Virial coefficients of hard spheres and hard disks up to the ninth", Physical Review E 71 pp. 021105 (2005)
  2. Nathan Clisby and Barry M. McCoy "Ninth and Tenth Order Virial Coefficients for Hard Spheres in D Dimensions", Journal of Statistical Physics 122 pp. 15-57 (2006)