Modified Lennard-Jones model

From SklogWiki
Revision as of 11:02, 26 September 2014 by Carl McBride (talk | contribs) (→‎Virial coefficients: Added a recent publication)
Jump to navigation Jump to search

The modified Lennard-Jones model is given by (Eq. 2 [1]):

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{12}(r)=\left\{{\begin{array}{ll}4\epsilon \left[\left({\frac {\sigma }{r}}\right)^{12}-\left({\frac {\sigma }{r}}\right)^{6}\right]+C_{1}&r\leq 2.3\sigma \\C_{2}\left({\frac {\sigma }{r}}\right)^{12}+C_{3}\left({\frac {\sigma }{r}}\right)^{6}+C_{4}\left({\frac {r}{\sigma }}\right)^{2}+C_{5}&2.3\sigma <r<2.5\sigma \\0&2.5\sigma \leq r\end{array}}\right.}

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{1}=0.016132\epsilon } , Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{2}=3136.6\epsilon } Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{3}=-68.069\epsilon } Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{4}=0.083312\epsilon } and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{5}=0.74689\epsilon } . These parametrs are chosen so that the function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Phi _{12}(r)} , as well as the first derivative, is continuous both at Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle r=2.3\sigma } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = 2.5\sigma} . These parameters have recently been recalculated with greater precision by Asano and Fuchizaki [2], leading to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_1 = 0.0163169237\epsilon} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_2 = 3136.5686 \epsilon} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_3 = -68.069 \epsilon} [3]. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_4 = −0.0833111261\epsilon} and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle C_{5}=0.746882273\epsilon } .

Virial coefficients

The virial coefficients up to the seventh order have been calculated for the range of temperatures Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT/\epsilon = 0.3-70} [4]. See also [5].

References