Universality classes

From SklogWiki
Revision as of 05:51, 5 November 2021 by 67.0.226.201 (talk) (Added short description for \eta)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Universality classes are groups of models that have the same set of critical exponents

dimension class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
2 0 1/8 7/4 1 1/4 2D Ising
3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising
Local linear interface
any 0 1/2 1 3 1/2 0 Mean-field
Molecular beam epitaxy
Random-field
3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY

where

Derivations

3-state Potts

Potts model

Ashkin-Teller

Ashkin-Teller model

Chiral

Directed percolation

Ising

The Hamiltonian of the Ising model is


where and the summation runs over the lattice sites.

The order parameter is

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are

(In fact, the specific heat diverges logarithmically with the critical temperature)

along with [1]:


In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:

with a critical temperature of [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface

Mean-field

The critical exponents of are derived as follows [4]:

Heat capacity exponent:

(final result: )

Magnetic order parameter exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta=1/2} )

Susceptibility exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1} )

Equation of state exponent:

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=3} )

Correlation length exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=1/2} )

Correlation function exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta=0} )

Molecular beam epitaxy

Random-field

XY

For the three dimensional XY model one has the following critical exponents[5]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = -0.0146(8)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= 0.3485(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1.3177(5) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=4.780(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta =0.0380(4) }

References