Legendre polynomials (aka. Legendre functions of the first kind, Legendre coefficients, or zonal harmonics)
are solutions of the Legendre differential equation.
The Legendre polynomial,  can be defined by the contour integral
 can be defined by the contour integral
 
The first seven  Legendre polynomials are:
 
 
 
 
 
 
 
"shifted" Legendre polynomials (which obey the orthogonality relationship):
 
 
 
 
Powers in terms of Legendre polynomials:
 
![{\displaystyle x^{2}={\frac {1}{3}}[P_{0}(x)+2P_{2}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/685bc6005f1f71112eeab78e10c0c63633df1c8f) 
![{\displaystyle x^{3}={\frac {1}{5}}[3P_{1}(x)+2P_{3}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f95e83961b601f0a2b99d603e01a354f4897a919) 
![{\displaystyle x^{4}={\frac {1}{35}}[7P_{0}(x)+20P_{2}(x)+8P_{4}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7cc35ab8fd4a4db04d6578858127d33eb56170) 
![{\displaystyle x^{5}={\frac {1}{63}}[27P_{1}(x)+28P_{3}(x)+8P_{5}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d52e1477750ad3d0c7e672dea0ffe46771c7e074) 
![{\displaystyle x^{6}={\frac {1}{231}}[33P_{0}(x)+110P_{2}(x)+72P_{4}(x)+16P_{6}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99acb8dfaa1450eba1cfd4b575e1982776f818a7) 
Associated  Legendre polynomials.
 
 
 
 
 
 
etc.
See also