Master equation
The master equation describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) = {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right) \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right) {\mathrm d}t'}
where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right) \right) = \frac{-1}{2\pi} \oint_c \exp (-izt) \sum_{ \{k'' \} \neq 0} {\mathcal D}^+_{0 \{k'' \}} (z) \rho_{\{k'' \}} \left( \{ {\mathbf \upsilon} \},0 \right) }
and the diagonal fragment is given by (Ref. 1 Eq. 3-10)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{00}(\tau) = \frac{1}{2\pi i} \oint_c \exp (-iz \tau) \psi^+_{00} (z)~ {\mathrm d}z }