Percolation analysis

From SklogWiki
Jump to navigation Jump to search

This entry focuses on the application of percolation analysis to problems in statistical mechanics. For a general discussion see Refs. [1] [2]

Sites, bonds, and clusters

This topic concerns the analysis of connectivity of elements (sites) distributed in different positions of a given large system. Using some connectivity rules it is possible to define bonds between pairs of sites. These bonds can be used to build up clusters of sites. Two sites in a cluster can be connected directly by a bond between them or indirectly by one or more sequences of bonds between pairs of sites. The sites of the system can belong to different types (species in the chemistry language). Bonds are usually permitted only between near sites.

Lattice and continuum (off-lattice) models

Attending to the spatial distribution of the sites, one can classify the models into lattice models and continuum (or off-lattice) models. Off-lattice models are more difficult to deal with from the numerical point of view, but in many applications are expected to be more realistic to capture the physics of a number of real systems Cite error: Closing </ref> missing for <ref> tag a two-dimensional square lattice in which:

  • Each site of the lattice can be occupied (by one particle) or empty.
  • The probability of occupancy of each site is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x \right. } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < \left. x \right. < 1 } .
  • Two sites are considered to be bonded if and only if:
    • They are nearest neighbours and
    • Both sites are occupied.

Fraction of percolating realizations

On such a system, it is possible to perform simulations considering different system sizes (with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L \times L } sites), using periodic boundary conditions. In such simulations one can generate different system realizations for given values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } , and compute the fraction, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x,L) } , of realizations with percolating clusters. For low values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, ( x \rightarrow 0 )} one will have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x,L) \approx 0 } , whereas when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \rightarrow 1 } , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x,L) \approx 1} . Considering the behavior of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per} } as a function of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } , for different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } the transition between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per} \approx 0 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per} \approx 1 } occurs more abruptly as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } increases. In addition, it is possible to compute the value of the occupancy probability Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{c} } at which the transition would take place for an infinite system (that is to say, in the thermodynamic limit).

Finite-size scaling

Considering the functions the percolation theory predicts for large system sizes:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{L \rightarrow \infty} X_{\rm per}(x,L) = 0 ; {\rm for} \; \; x < x_c }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{L \rightarrow \infty} X_{\rm per}(x,L) = 1 ; {\rm for} \; \; x > x_c }


In addition, at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = x_c } , it is expected that the fraction of percolating realizations do not depend on the system size:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x_c,L) \approx X_{\rm per}^{(c)} }  ; for large values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } .

Computation of the percolation threshold

A couple of simple procedures to estimate the percolation threshold (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c } in the example introduced above) are described here. These procedures are similar to those used in the analysis of critical thermodynamic transitions[3]. More sophisticated methods can be found in the literature (See Refs. [4] [5] [6] for details).

Crossing of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x,L) } for different system sizes

In practice, one has to compute the fraction of percolating realizations for different values of the control parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x \right. } and different system sizes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L \right. } . The critical value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c } is then estimated by plotting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. X_{\rm per}(x) \right. } as a function of for several values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } . The crossing of the curves with different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } provide estimates of both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}^{(c)} } .

Computation of pseudo-critical parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(L) } and extrapolation

Given the results of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x,L) } for a given system size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L } , a pseudo-critical size dependent variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(L)=x_c^{(L)} } is computed by matching Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x_c^{(L)},L) = X_{\rm per}^{(c)}} .

If the universal value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{per}^{(c)} } value is unknown for the type of transition considered, an alternative definition for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c\left(L \right) } can be taken, for instance:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{\rm per}(x_c^{(L)},L) = 1/2} .

The percolation theory predicts that the pseudo-critical values Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(L) } will scale as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c \left( L \right) = x_c \left( \infty \right) + a L^{- b} }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } is a critical exponent (See Refs. [1] [2] for details). Therefore, by fitting the results of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c(L) } it is possible to estimate the percolation transition location: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_c = x_c ( \infty ) } .

Percolation threshold and critical thermodynamic transitions

In some systems, with an appropriate definition of bonding criteria, the percolation transition occurs at the same value of the control parameter (density, temperature, chemical potential) as the thermodynamic transition [7] [8] . In these case cluster algorithms become very efficient, and moreover, the percolation analysis can be useful to develop algorithms to locate the transition (see the cluster algorithms page for more details).

References