Universality classes

From SklogWiki
Revision as of 12:21, 26 July 2011 by Carl McBride (talk | contribs) (Added internal links to the models)
Jump to navigation Jump to search

Universality classes are groups of models that have the same set of critical exponents

dimension class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
2 0 1 1/4 2D Ising
3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising
Local linear interface
0 1 Mean-field
Molecular beam epitaxy
Random-field
3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY

where

3-state Potts

Potts model

Ashkin-Teller

Ashkin-Teller model

Chiral

Directed percolation

Ising

The Hamiltonian of the Ising model is


where and the summation runs over the lattice sites.

The order parameter is

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are

(In fact, the specific heat diverges logarithmically with the critical temperature)

along with [1]:


In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=0.63012(16) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0.1096(5) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= 0.32653(10) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1.2373(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=4.7893(8) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta =0.03639(15) }

with a critical temperature of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_BT_c = 4.51152786~S } [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface

Mean-field

The critical exponents of are derived as follows [4]:

Heat capacity exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0} )

Magnetic order parameter exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta}

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta=1/2} )

Susceptibility exponent:

(final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma=1} )

Molecular beam epitaxy

Random-field

XY

For the three dimensional XY model one has the following critical exponents[5]:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu=0.67155(27) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = -0.0146(8)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= 0.3485(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta=4.780(2) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta =0.0380(4) }

References