[EN CONSTRUCCION]
Functional form
The 9-3 Lennard-Jones potential is related to the standard Lennard-Jones potential.
It takes the form:
![{\displaystyle V(r)={\frac {3{\sqrt {3}}}{2}}\epsilon \left[\left({\frac {\sigma }{r}}\right)^{9}-\left({\frac {\sigma }{r}}\right)^{3}\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/165d80fbb8c692498e9ffa866c81cb5f1466306e)
The minimum value of
is obtained at
, with
,

Applications
It is commonly used to model the interaction between the particles
of a fluid with a flat structureless solid wall.
Interaction between a solid and a fluid molecule
Let us consider the space divided in two regions:
: this region is occupied by a diffuse solid with density
composed of 12-6 Lennard-Jones atoms
with paremeters
and
Our aim is to compute the total interaction between this solid and a molecule located at a position
.
Such an interaction can be computed using cylindrical coordinates ( I GUESS SO, at least).
The interaction will be:
![{\displaystyle V_{W}\left(x\right)=4\epsilon _{sf}\rho _{s}\int _{0}^{2\pi }d\phi \int _{-\infty }^{-x}dz\int _{0}^{\infty }{\textrm {dr}}\left[\sigma ^{12}{\frac {r}{(r^{2}+z^{2})^{6}}}-\sigma ^{6}{\frac {r}{(r^{2}+z^{2})^{3}}}\right].}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9217d01b69414fd3f12ff454c40508a1beaa505a)
![{\displaystyle V_{W}\left(x\right)=8\pi \epsilon _{sf}\rho _{s}\int _{-\infty }^{-x}{{\textrm {d}}z}\left[{\frac {\sigma ^{12}}{10(r^{2}+z^{2})^{5}}}-{\frac {\sigma ^{6}}{4(r^{2}+z^{2})^{2}}}\right]_{r=\infty }^{r=0}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/52cb87920df042123c2ac2d7b70da3848e56feb4)
![{\displaystyle V_{W}\left(x\right)=8\pi \epsilon _{sf}\rho _{s}\int _{-\infty }^{-x}{{\textrm {d}}z}\left[{\frac {\sigma ^{12}}{10z^{10}}}-{\frac {\sigma ^{6}}{4z^{4}}}\right];}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0b4cb931dc5bcc37406b725de9d8bb8df2f8d334)
![{\displaystyle V_{W}\left(x\right)=8\pi \epsilon _{sf}\rho _{s}\left[-{\frac {\sigma ^{12}}{90z^{9}}}+{\frac {\sigma ^{6}}{12z^{3}}}\right]_{z=-\infty }^{z=-x};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5f97f07b4c2f68f06ce80c1909e799d665c156a4)
![{\displaystyle V_{W}\left(x\right)=8\pi \epsilon _{sf}\rho _{s}\left[{\frac {\sigma ^{12}}{90x^{9}}}-{\frac {\sigma ^{6}}{12x^{3}}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/518d4f41de7a8be3774f62769d66c18974774287)
[TO BE CONTINUED]