Kern and Frenkel patchy model
The Kern and Frenkel [1] patchy model is an amalgamation of the hard sphere model with attractive square well patches (HSSW). The potential has an angular aspect, given by (Eq. 1)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}({\mathbf r}_{ij}; \tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) =\Phi_{ij}^{ \mathrm{HSSW}}({\mathbf r}_{ij}) \cdot f(\tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) }
where the radial component is given by the square well model (Eq. 2)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}^{ \mathrm{HSSW}} \left({\mathbf r}_{ij} \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }
and the orientational component is given by (Eq. 3)
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} is the solid angle of a patch (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \beta, ...} ) whose axis is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{e}} (see Fig. 1 of Ref. 1), forming a conical segment.
Two patches
The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers [2][3][4].
Four patches
- Main article: Anisotropic particles with tetrahedral symmetry
Single-bond-per-patch-condition
If the two parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} and fullfil the condition
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\delta} \leq \dfrac{1}{2(1+\lambda\sigma)} }
then the patch cannot be involved in more than one bond. Enforcing this condition makes it possible to compare the simulations results with Wertheim theory [2][4]
References
- ↑ Norbert Kern and Daan Frenkel "Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction", Journal of Chemical Physics 118, 9882 (2003)
- ↑ 2.0 2.1 F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia "Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation", Journal of Chemical Physics 126 194903 (2007)
- ↑ Achille Giacometti, Fred Lado, Julio Largo, Giorgio Pastore, and Francesco Sciortino "Effects of patch size and number within a simple model of patchy colloids", Journal of Chemical Physics 132, 174110 (2010)
- ↑ 4.0 4.1 José Maria Tavares, Lorenzo Rovigatti, and Francesco Sciortino "Quantitative description of the self-assembly of patchy particles into chains and rings", Journal of Chemical Physics 137 044901 (2012)
- Related reading
- Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics 136 094512 (2012)
- Emanuela Bianchi, Günther Doppelbauer, Laura Filion, Marjolein Dijkstra, and Gerhard Kahl "Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms", Journal of Chemical Physics 136 214102 (2012)
- Z. Preisler, T. Vissers, F. Smallenburg and F. Sciortino "Crystals of Janus colloids at various interaction ranges", Journal of Chemical Physics 145 064513 (2016)