Talk:Capillary waves

From SklogWiki
Revision as of 19:45, 30 January 2009 by 91.76.179.101 (talk) (New page: ==Thermal capillary waves== Hello, now I'm writing the same article for [http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5_%D0%BA%D0%B0%D0%BF%D0%B8%D0%BB%D0%BB%...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Thermal capillary waves

Hello, now I'm writing the same article for Russian wikipedia. While I was deducing the expression for mean square amplitude I found my result to be two times less than common one (that is in Molecular Theory of Capillarity and refered to in many articles). Could you please tell me weather I am right or not.

I claim that the mean energy of each mode is rather than . That's because each mode has to degrees of freedom and , since each wave is , with the energy of each mode proportional to . This obviously lead to the mean energy of each mode to be . That was the real notation and now lets turn to the complex notation.

Each mode with the fixed wave vector is presented as , — wave vector, vector. The energy is proportional to (indeed it is ). According to equipartition:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle x_i \frac{\partial H}{\partial x_j} \right \rangle = \delta_{ij} k_B T, }

we obtain:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle h_\mathbf{k} \, \frac{\partial}{\partial h_\mathbf{k}} \left[ \frac{\sigma L^2}{2} \left( \frac{2}{a_c^2} + \mathbf{k}^2 \right) h^*_\mathbf{k} h_\mathbf{k} \right] \right \rangle = \left \langle h_\mathbf{k} \left[ \frac{\sigma L^2}{2} \left( \frac{2}{a_c^2} + \mathbf{k}^2 \right) h^*_\mathbf{k} \right] \right \rangle = \left \langle E_\mathbf{k} \right \rangle = k_B T. }

And again we get the same result. What do you think of it? Is there a mistake? Please help, I'm really stuck with it. Grigory Sarnitskiy. 91.76.179.101 19:45, 30 January 2009 (CET)