Grand canonical ensemble
Ensemble variables
- Chemical Potential,
- Volume,
- Temperature,
Partition Function
Classical Partition Function (one-component system) in a three-dimensional space:
where:
- is the number of particles
- is the de Broglie thermal wavelength (depends on the temperature)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta ={\frac {1}{k_{B}T}}} , with being the Boltzmann constant
- is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(R^{*}\right)^{3N}} represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int d(R^{*})^{3N}=1}
Free energy and Partition Function
Free energy and Partition Function
The Helmholtz energy function is related to the canonical partition function via: