Monte Carlo in the microcanonical ensemble

From SklogWiki
Jump to navigation Jump to search

Integration of the kinetic degrees of freedom

Consider a system of identical particles, with total energy given by:

where the first term on the right hand side is the kinetic energy, whereas the second one is the potential energy (function of the position coordinates)

Now, let us consider the system in a microcanonical ensemble; Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.E\right.} be the total energy of the system (constrained in this ensemble)

The probability, of a given position configuration , with potential energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \left( X^{3N} \right) } can be written as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X^{3N}|E \right) \propto \int d P^{3N} \delta \left[ K(P^{3N}) - \Delta E \right] }  ; (Eq. 1)

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. P^{3N} \right. } stands for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3N} momenta, and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta E = E - U\left(X^{3N}\right) }

The Integral in the right hand side of Eq. 1 corresponds to the surface of a 3N-dimensional hyper-sphere of radius  ; Therefore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi \left( X^{3N}|E \right) \propto \left[ E- U(X^{3N}) \right]^{(3N-1)/2} }

See Ref 1 for an application of Monte Carlo simulation using this ensemble.

References

  1. N. G. Almarza and E. Enciso "Critical behavior of ionic solids" Phys. Rev. E 64, 042501 (2001) [4 pages ]