Variables:
- Number of Particles,

- Volume,

Partition Function[edit]
The partition function,
,
for a system of
identical particles each of mass
is given by
![{\displaystyle Q_{NVT}={\frac {1}{N!h^{3N}}}\iint d{\mathbf {p} }^{N}d{\mathbf {r} }^{N}\exp \left[-{\frac {H({\mathbf {p} }^{N},{\mathbf {r} }^{N})}{k_{B}T}}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e0a25dcd86f1d8d5b2f0a9d4198662e8c24463c)
where
is Planck's constant,
is the temperature,
is the Boltzmann constant and
is the Hamiltonian
corresponding to the total energy of the system.
For a classical one-component system in a three-dimensional space,
,
is given by:
![{\displaystyle Q_{NVT}={\frac {V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]~~~~~~~~~~\left({\frac {V}{N\Lambda ^{3}}}\gg 1\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f7387ebcf5770cb785abc61d90afa3c08cd79da9)
where:
is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
represent the 3N position coordinates of the particles (reduced with the system size): i.e. 
See also[edit]
References[edit]