Ideal gas partition function
The canonical ensemble partition function, Q, for a system of N identical particles each of mass m is given by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!}\frac{1}{h^{3N}}\int\int d{\mathbf p}^N d{\mathbf r}^N \exp \left[ - \frac{H({\mathbf p}^N,{\mathbf r}^N)}{k_B T}\right]}
where h is Planck's constant, T is the temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant. When the particles are distinguishable then the factor N! disappears. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(p^N, r^N)} is the Hamiltonian corresponding to the total energy of the system. H is a function of the 3N positions and 3N momenta of the particles in the system. The Hamiltonian can be written as the sum of the kinetic and the potential energies of the system as follows
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H({\mathbf p}^N, {\mathbf r}^N)= \sum_{i=1}^N \frac{|{\mathbf p}_i |^2}{2m} + {\mathcal V}({\mathbf r}^N)}
Thus we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!}\frac{1}{h^{3N}}\int d{\mathbf p}^N \exp \left[ - \frac{|{\mathbf p}_i |^2}{2mk_B T}\right] \int d{\mathbf r}^N \exp \left[ - \frac{{\mathcal V}({\mathbf r}^N)} {k_B T}\right]}
This separation is only possible if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal V}({\mathbf r}^N)} is independent of velocity (as is generally the case). The momentum integral can be solved analytically:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d{\mathbf p}^N \exp \left[ - \frac{|{\mathbf p} |^2}{2mk_B T}\right]=(2 \pi m k_B T)^{3N/2}}
Thus we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!} \frac{1}{h^{3N}} \left( 2 \pi m k_B T\right)^{3N/2} \int d{\mathbf r}^N \exp \left[ - \frac{{\mathcal V}({\mathbf r}^N)} {k_B T}\right]}
The integral over positions is known as the
configuration integral,
(from the German Zustandssumme meaning "sum over states")
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{NVT}= \int d{\mathbf r}^N \exp \left[ - \frac{{\mathcal V}({\mathbf r}^N)} {k_B T}\right]}
In an ideal gas there are no interactions between particles so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal V}({\mathbf r}^N)=0} . Thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(-{\mathcal V}({\mathbf r}^N)/k_B T)=1} for every gas particle. The integral of 1 over the coordinates of each atom is equal to the volume so for N particles the configuration integral is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^N} where V is the volume. Thus we have
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{V^N}{N!}\left( \frac{2 \pi m k_B T}{h^2}\right)^{3N/2}}
If we define the de Broglie thermal wavelength as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda} where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Lambda = \sqrt{h^2 / 2 \pi m k_B T}}
one arrives at (Eq. 4-12 in [1])
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=\frac{1}{N!} \left( \frac{V}{\Lambda^{3}}\right)^N = \frac{q^N}{N!}}
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q= \frac{V}{\Lambda^{3}}}
is the single particle translational partition function.
Thus one can now write the partition function for a real system can be built up from the contribution of the ideal system (the momenta) and a contribution due to particle interactions, i.e.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{NVT}=Q_{NVT}^{\rm ideal} ~Q_{NVT}^{\rm excess}}
References[edit]
- ↑ Terrell L. Hill "An Introduction to Statistical Thermodynamics" (1960) ISBN 0486652424