Supercooling and nucleation

From SklogWiki
Revision as of 17:17, 1 February 2012 by Carl McBride (talk | contribs) (Added a subsection headding)
Jump to navigation Jump to search

Supercooling, undercooling and nucleation.

Volmer and Weber kinetic model

Volmer and Weber kinetic model [1] results in the following nucleation rate:

Failed to parse (unknown function "\label"): {\displaystyle I^{VW} = N^{eq}(n^*) k^+(n^*) = k^+(n^*) N_A \exp \left( -\frac{W(n^*)}{k_BT} \right) \label{eq_IVW} }

Szilard nucleation model

Homogeneous nucleation temperature

The homogeneous nucleation temperature () is the temperature below which it is almost impossible to avoid spontaneous and rapid freezing.

Zeldovich factor

The Zeldovich factor [2] () modifies the Volmer and Weber expression \eqref{eq_IVW}, making it applicable to spherical clusters:

Zeldovich-Frenkel equation

Zeldovich-Frenkel master equation is given by

See also Shizgal and Barrett [3].

Nucleation theorem

See also

References

  1. M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie 119 pp. 277-301 (1926)
  2. J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS 18 pp. 1-22 (1943)
  3. B. Shizgal and J. C. Barrett "Time dependent nucleation", Journal of Chemical Physics 91 pp. 6505-6518 (1989)
Related reading
Books