Radial distribution function

From SklogWiki
Revision as of 16:45, 16 January 2017 by Carl McBride (talk | contribs) (Added a recent publication)
Jump to navigation Jump to search

The radial distribution function is a special case of the pair distribution function for an isotropic system. A Fourier transform of the radial distribution function results in the structure factor, which is experimentally measurable. The following plot is of a typical radial distribution function for the monatomic Lennard-Jones liquid.

Typical radial distribution function for the monatomic Lennard-Jones liquid.
Typical radial distribution function for the monatomic Lennard-Jones liquid.

Density Expansion of the radial distribution function

The radial distribution function of a compressed gas may be expanded in powers of the density [1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. {\rm g}(r) \right. = e^{-\beta \Phi(r)} (1 + \rho {\rm g}_1 (r) + \rho^2 {\rm g}_2 (r) + ...)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is the number of molecules per unit volume and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)} is the intermolecular pair potential. The function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}(r)} is normalized to the value 1 for large distances. As is known, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_1 (r)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_2 (r)} , ... can be expressed by cluster integrals in which the position of of two particles is kept fixed. In classical mechanics, and on the assumption of additivity of intermolecular forces, one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_1 (r_{12})= \int f (r_{13}) f(r_{23}) ~{\rm d}{\mathbf r}_3}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_2 (r_{12})= \frac{1}{2}({\rm g}_1 (r_{12}))^2 + \varphi (r_{12}) + 2\psi (r_{12}) + \frac{1}{2} \chi (r_{12})}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_{ik}} is the distance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |{\mathbf r}_i -{\mathbf r}_k|} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)} is the Mayer f-function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. f(r) \right. = e^{-\beta \Phi(r)} -1}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi (r_{12}) = \int f (r_{13}) f (r_{24}) f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (r_{12}) = \int f (r_{13}) f (r_{23}) f (r_{24}) f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi (r_{12}) = \int f (r_{13}) f (r_{23}) f (r_{14}) f (r_{24}) f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4}

See also

References

Related reading