Polymers
Polymers
General[edit]
- Block copolymers
- Branched polymers
- Coil-globule transition
- Dendrimers
- Elastomers
- Flory exponent
- Helix-coil transition
- Linear polymers
- Polymer combs
- Radius of gyration
- Random walk
- Ring polymers
- Star polymers
- Theta solvent
Simulation techniques[edit]
The following are some of the computer simulation techniques specifically designed to study polymers:
- Concerted rotation algorithm
- End-bridging Monte Carlo
- Fragment regrowth Monte Carlo
- Lattice simulations (Polymers)
- Monte Carlo reptation moves
- Recoil growth
- RIS Metropolis Monte Carlo
Models[edit]
- Idealised models
- Ideal chain model (also known as the 'freely-jointed chain model)
- Bond fluctuation model
- Flory-Huggins model
- Kratky-Porod model (also known as semiflexible worm-like chains)
- Rotational isomeric state model (RISM)
- Rouse model
- Self-avoiding walk model (SAW)
- Realistic models
Interesting reading[edit]
Some of the first ever computer simulation studies of polymers:
- F. T. Wall, L. A. Hiller Jr. and D. J. Wheeler "Statistical Computation of Mean Dimensions of Macromolecules. I", Journal of Chemical Physics 22 pp. 1036-1041 (1954)
- F. T. Wall and J. J. Erpenbeck "New Method for the Statistical Computation of Polymer Dimensions", Journal of Chemical Physics 30 pp. 634-637 (1959)
Classic texts[edit]
- Paul J. Flory "Statistical Mechanics Of Chain Molecules" (1969) ISBN 1-56990-019-1
- Pierre-Giles de Gennes "Scaling Concepts in Polymer Physics", Cornell University Press (1979) ISBN 978-0-8014-1203-5
- M. Doi and S. F. Edwards "The Theory of Polymer Dynamics", International Series of Monographs on Physics 73 Oxford University Press (1988) ISBN 978-0-19-852033-7