Legendre transform
The Legendre transform (Adrien-Marie Legendre) is used to perform a change change of variables (see, for example, Ref. 1, Chapter 4 section 11 Eq. 11.20 - 11.25):
If one has the function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x,y);} one can write
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle df={\frac {\partial f}{\partial x}}dx+{\frac {\partial f}{\partial y}}dy}
Let , and , thus
If one subtracts from Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle df} , one has
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df- d(qy) = p~dx + q~dy -q~dy - y~dq}
or
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(f-qy)=p~dx - y~dq }
Defining the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g=f-qy} then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dg = p~dx + q~dy}
The partial derivatives of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are
- .
Example
See also
References
- Mary L. Boas "Mathematical methods in the Physical Sciences" John Wiley & Sons, Second Edition.
- Robert A. Alberty "Use of Legendre transforms in chemical thermodynamics", Pure and Applied Chemistry 73 pp. 1349-1380 (2001)