Chebyshev polynomials

From SklogWiki
Revision as of 10:57, 31 May 2007 by Carl McBride (talk | contribs) (New page: '''Chebyshev polynomials''' of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted <math>T_n(x)</math>. They are ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted . They are used as an approximation to a least squares fit, and are a special case of the ultra-spherical polynomial (Gegenbauer polynomial) with . Chebyshev polynomial of the first kind, can be defined by the contour integral

The first seven Chebyshev polynomials of the first kind are:



Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. T_2 (x) \right. =2x^2 -1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. T_3 (x) \right. =4x^3 - 3x}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. T_4 (x) \right. =8x^4 - 8x^2 +1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. T_5 (x) \right. =16x^5 - 20x^3 +5x}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. T_6 (x)\right. =32x^6 - 48x^4 + 18x^2 -1}

See also