Ornstein-Zernike relation from the grand canonical distribution function
Defining the local activity by
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z({\mathbf {r} })=z\exp[-\beta \psi ({\mathbf {r} })]}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta=1/k_BT} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant. Using those definitions the grand canonical partition function can be written as
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Xi=\sum_N^\infty{1\over N!}\int\dots\int \prod_i^Nz({\mathbf r}_i)\exp(-\beta U_N){\rm d}{\mathbf r}_1\dots{\rm d}{\mathbf r}_N} .
By functionally-differentiating Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Xi}
with respect to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle z({\mathbf {r} })}
, and utilizing the mathematical theorem concerning the functional derivative,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\delta z({\mathbf r})\over{\delta z({\mathbf r'})}}=\delta({\mathbf r}-{\mathbf r'})} ,
we obtain the following equations with respect to the density pair correlation functions:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho({\mathbf r})={\delta\ln\Xi\over{\delta \ln z({\mathbf r})}}} ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^{(2)}({\mathbf r},{\mathbf r}')={\delta^2\ln\Xi\over{\delta \ln z({\mathbf r})\delta\ln z({\mathbf r'})}}} .
A relation between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho({\mathbf r})}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho^{(2)}({\mathbf r},{\mathbf r}')}
can be obtained after some manipulation as,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\delta\rho({\mathbf r})\over{\delta \ln z({\mathbf r'})}}=\rho^{(2)}({\mathbf r,r'})-\rho({\mathbf r})\rho({\mathbf r'})+\delta({\mathbf r}-{\mathbf r'})\rho({\mathbf r})} .
Now, we define the direct correlation function by an inverse relation of the previous equation,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\delta \ln z({\mathbf r})\over{\delta\rho({\mathbf r'})}}={\delta({\mathbf r}-{\mathbf r'})\over{\rho({\mathbf r'})}}} .
Inserting these two results into the chain-rule theorem of functional derivatives,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int{\delta\rho({\mathbf r})\over{\delta \ln z({\mathbf r}^{\prime\prime})}}{\delta \ln z({\mathbf r}^{\prime\prime})\over{\delta\rho({\mathbf r'})}}{\rm d}{\mathbf r}^{\prime\prime}=\delta({\mathbf r}-{\mathbf r'})} ,
one obtains the Ornstein-Zernike relation.
Thus the Ornstein-Zernike relation is, in a sense, a differential form of the partition function.