Flexible molecules
Modelling of internal degrees of freedom, usual techniques:
Bond distances
- Atoms linked by a chemical bond (stretching):
Bond Angles
Bond sequence: 1-2-3:
Bond Angle:
Two typical forms are used to model the bending potential:
Dihedral angles. Internal Rotation
Bond sequence: 1-2-3-4
Dihedral angle (Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \phi } ) definition:
Consider the following vectors:
- ; Unit vector in the direction of the 2-3 bond
- ;
Component of that is ortogonal to (normalized)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{c} = \vec{a} \times \vec{b} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e_{34} = (\cos \phi) \vec{a} + (sin \phi) \vec{c} }
For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i }
or
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i \cos \left( i \phi \right) }