Legendre polynomials
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
whereas
The first seven Legendre polynomials are:
"shifted" Legendre polynomials (which obey the orthogonality relationship in the range [0:1]):
Powers in terms of Legendre polynomials:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3= \frac{1}{5}[3P_1 (x) + 2P_3(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4= \frac{1}{35}[7P_0 (x) + 20P_2(x)+ 8P_4(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^5= \frac{1}{63}[27P_1 (x) + 28P_3(x)+ 8P_5(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]}
See also
References
- B. P. Demidotwitsch, I.A. Maron, and E.S. Schuwalowa, "Métodos numéricos de
Análisis", (Ed. Paraninfo, Madrid, 1980) (original in Russian)