Potts model
The Potts model was proposed by Renfrey B. Potts in 1952 (Ref. 1). The Potts model is a generalisation of the Ising model to more than two components. For a general discussion on Potts models see Refs. 2 and 3. In practice one has a lattice system. The sites of the lattice can be occupied by particles of different species, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=1,2, \cdots, q } .
The energy of the system, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } , is defined as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = - K \sum_{ \langle ij \rangle } \delta (S_i,S_j) }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K } is the coupling constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle ij \rangle } indicates that the sum is performed exclusively over pairs of nearest neighbour sites, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(S_i,S_j) } is the Kronecker delta. Note that the particular case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=2 } is equivalent to the Ising model.
Phase transitions
Considering a symmetric situation (i.e. equal chemical potential for all the species):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_1 = \mu_2 = \cdots = \mu_q } ;
the Potts model exhibits order-disorder phase transitions. For space dimensionality Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=2 } , and low values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } the transitions are continuous (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(T) } is a continuous function), but the heat capacity, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(T) = (\partial E/\partial T) } , diverges at the transition temperature. The critical behaviour of different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } belong to (or define) different universality classes of criticality
For space dimensionality Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=3 } , the transitions for Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle q\geq 3} are first order (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } shows a discontinuity at the transition temperature).
See also
References
- Renfrey B. Potts "Some generalized order-disorder transformations", Proceedings of the Cambridge Philosophical Society 48 pp. 106−109 (1952)
- F. Y. Wu "The Potts model", Reviews of Modern Physics 54 pp. 235-268 (1982)
- F. Y. Wu "Erratum: The Potts model", Reviews of Modern Physics 55 p. 315 (1983)
- Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 12 (freely available pdf)