Building up a body centered cubic lattice

From SklogWiki
Revision as of 13:28, 22 July 2009 by Carl McBride (talk | contribs) (Added a Jmol applet + category.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


<jmol>

 <jmolApplet>
 <script>set spin X 10; spin on</script>
 <size>200</size>
 <color>lightgrey</color>
   <wikiPageContents>Body_centered_cubic_lattice.xyz</wikiPageContents>
</jmolApplet>
</jmol>
A body centered cubic lattice
  • Consider:
  1. a cubic simulation box whose sides are of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L \right. }
  2. a number of lattice positions, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. M \right. } given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. M = 2 m^3 \right. } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m } being a positive integer
  • The positions are those given by:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \begin{array}{l} x_a = i_a \times (\delta l) \\ y_a = j_a \times (\delta l) \\ z_a = k_a \times (\delta l) \end{array} \right\} }

where the indices of a given valid site Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (i_a,j_a,k_a)} must fulfill:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_a, j_a, k_a } must be either all odd or all even.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le i_a \le 2 m }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \le k_a \le 2 m }

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\delta l = L/(2m) \right. }

Atomic position(s) on a cubic cell[edit]

  • Number of atoms per cell: 2
  • Coordinates:

Atom 1: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) }

Atom 2: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( x_2, y_2, z_2 \right) = \left( l/2, l/2, l/2 \right) }


Cell dimensions:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=b=c = l }
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \beta = \gamma = 90^0 }