Grand canonical ensemble
Ensemble variables
- Chemical Potential, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\mu \right.}
- Volume, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.V\right.}
- Temperature,
Partition Function
Classical Partition Function (one-component system) in a three-dimensional space:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{\mu VT}=\sum _{N=0}^{\infty }{\frac {\exp \left[\beta \mu N\right]V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}
where:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.N\right.} is the number of particles
- is the de Broglie thermal wavelength (depends on the temperature)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta ={\frac {1}{k_{B}T}}} , with being the Boltzmann constant
- is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(R^{*}\right)^{3N}} represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int d(R^{*})^{3N}=1}
Free energy and Partition Function
(THis subsection should be checked)
The Corresponding thermodynamic potentail for the Grand Canonical Partition function is:
- , i.e.:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p V = k_B T \log Q_{\mu V T } \right. }