Grand canonical ensemble

From SklogWiki
Revision as of 15:20, 28 February 2007 by Noe (talk | contribs)
Jump to navigation Jump to search

Ensemble variables

  • Chemical Potential, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\mu \right.}
  • Volume, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.V\right.}
  • Temperature,

Partition Function

Classical Partition Function (one-component system) in a three-dimensional space:

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{\mu VT}=\sum _{N=0}^{\infty }{\frac {\exp \left[\beta \mu N\right]V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}

where:

  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.N\right.} is the number of particles
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \beta ={\frac {1}{k_{B}T}}} , with being the Boltzmann constant
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left(R^{*}\right)^{3N}} represent the 3N position coordinates of the particles (reduced with the system size): i.e. Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int d(R^{*})^{3N}=1}

Free energy and Partition Function

(THis subsection should be checked)

The Corresponding thermodynamic potentail for the Grand Canonical Partition function is:

, i.e.:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p V = k_B T \log Q_{\mu V T } \right. }