Grand canonical ensemble

From SklogWiki
Jump to navigation Jump to search

Ensemble variables

  • Chemical Potential, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.\mu \right.}
  • Volume,
  • Temperature, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.T\right.}

Partition Function

Classical partition function (one-component system) in a three-dimensional space: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{\mu VT}}

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{\mu VT}=\sum _{N=0}^{\infty }{\frac {\exp \left[\beta \mu N\right]V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}

where:

  • is the number of particles
  • , with being the Boltzmann constant
  • is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
  • represent the Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 3N} position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }

Free energy and Partition Function

(THis subsection should be checked)

The corresponding thermodynamic potentail for the grand canonical partition function is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A - \mu N \right. } , i.e.:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p V = k_B T \log Q_{\mu V T } \right. }