Combining rules
The combining rules are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled and ). Most of the rules are designed to be used with a specific interaction potential in mind. (See also Mixing rules).
Böhm-Ahlrichs[edit]
Diaz Peña-Pando-Renuncio[edit]
Fender-Halsey[edit]
The Fender-Halsey combining rule for the Lennard-Jones model is given by [4]
Gilbert-Smith[edit]
The Gilbert-Smith rules for the Born-Huggins-Meyer potential[5][6][7].
Good-Hope rule[edit]
The Good-Hope rule for Mie–Lennard‐Jones or Buckingham potentials [8] is given by (Eq. 2):
Hudson and McCoubrey[edit]
Hogervorst rules[edit]
The Hogervorst rules for the Exp-6 potential [10]:
and
Kong rules[edit]
The Kong rules for the Lennard-Jones model are given by (Table I in [11]):
Kong-Chakrabarty rules[edit]
The Kong-Chakrabarty rules for the Exp-6 potential [12] are given by (Eqs. 2-4):
and
Lorentz-Berthelot rules[edit]
The Lorentz rule is given by [13]
which is only really valid for the hard sphere model.
The Berthelot rule is given by [14]
These rules are simple and widely used, but are not without their failings [15] [16] [17] [18].
Mason-Rice rules[edit]
The Mason-Rice rules for the Exp-6 potential [19].
Srivastava and Srivastava rules[edit]
The Srivastava and Srivastava rules for the Exp-6 potential [20].
Sikora rules[edit]
The Sikora rules for the Lennard-Jones model [21].
Tang and Toennies[edit]
Waldman-Hagler rules[edit]
The Waldman-Hagler rules [23] are given by:
and
References[edit]
- ↑ Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics 77 pp. 2028- (1982)
- ↑ M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics 76 pp. 325- (1982)
- ↑ M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics 76 pp. 333- (1982)
- ↑ B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics 36 pp. 1881-1888 (1962)
- ↑ T. L. Gilbert "Soft‐Sphere Model for Closed‐Shell Atoms and Ions", Journal of Chemical Physics 49 pp. 2640- (1968)
- ↑ T. L. Gilbert, O. C. Simpson, and M. A. Williamson "Relation between charge and force parameters of closed‐shell atoms and ions", Journal of Chemical Physics 63 pp. 4061- (1975)
- ↑ Felix T. Smith "Atomic Distortion and the Combining Rule for Repulsive Potentials", Physical Review A 5 pp. 1708-1713 (1972)
- ↑ Robert J. Good and Christopher J. Hope "New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions", Journal of Chemical Physics 53 pp. 540- (1970)
- ↑ G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society 56 pp. 761-766 (1960)
- ↑ W. Hogervorst "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica 51 pp. 77-89 (1971)
- ↑ Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics 59 pp. 2464-2467 (1973)
- ↑ Chang Lyoul Kong , Manoj R. Chakrabarty "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", Journal of Physical Chemistry 77 pp. 2668-2670 (1973)
- ↑ H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik 12 pp. 127-136 (1881)
- ↑ Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 126 pp. 1703-1855 (1898)
- ↑ Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics 99 pp. 619-625 (2001)
- ↑ Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics 106 pp. 2367-2370 (2008)
- ↑ W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics 119 pp. 9145- (2003)
- ↑ Caroline Desgranges and Jerome Delhommelle "Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties", Journal of Chemical Physics 140 104109 (2014)
- ↑ Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics 22 pp. 522- (1954)
- ↑ B. N. Srivastava and K. P. Srivastava "Combination Rules for Potential Parameters of Unlike Molecules on Exp‐Six Model", Journal of Chemical Physics 24 pp. 1275-1276 (1956)
- ↑ P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics 3 pp. 1475- (1970)
- ↑ K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters 1 pp. 91-101 (1986)
- ↑ M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry 14 pp. 1077-1084 (1993)
Related reading