Compressibility equation

From SklogWiki
Jump to navigation Jump to search

The compressibility equation (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} ) can be derived from the density fluctuations of the grand canonical ensemble (Eq. 3.16 in Ref. 1). For a homogeneous system:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B T \left.\frac{\partial \rho }{\partial p}\right\vert_{T} = 1+ \rho \int h(r) ~{\rm d}{\mathbf r} = 1+\rho \int [{\rm g}^{(2)}({\mathbf r}) -1 ] {\rm d}{\mathbf r} = \frac{ \langle N^2 \rangle - \langle N\rangle^2}{\langle N\rangle}=\rho k_B T \chi_T}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} is the total correlation function, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}^{(2)}(r)} is the pair distribution function and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant.

For a spherical potential

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{k_BT} \left.\frac{\partial p}{\partial \rho}\right\vert_{T} = 1 - \rho \int_0^{\infty} c(r) ~4 \pi r^2 ~{\rm d}r \equiv 1- \rho \hat{c}(0) \equiv \frac{1}{1+\rho \hat{h}(0)} \equiv \frac{1}{ 1 + \rho \int_0^{\infty} h(r) ~4 \pi r^2 ~{\rm d}r}}

Note that the compressibility equation, unlike the energy and pressure equations, is valid even when the inter-particle forces are not pairwise additive.

References[edit]

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)