Equations of state for hard sphere mixtures
Jump to navigation
Jump to search
The following are equations of state for mixtures of hard spheres.
Mansoori, Carnahan, Starling, and Leland[edit]
The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7):
where
where is the number of components, is the diameter of the th component, and is the mole fraction, such that .
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y_{1}=\sum _{j>i=1}^{m}\Delta _{ij}{\frac {\sigma _{i}+\sigma _{j}}{\sqrt {\sigma _{i}\sigma _{j}}}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y_{2}=\sum _{j>i=1}^{m}\Delta _{ij}\sum _{k=1}^{m}\left({\frac {\xi _{k}}{\xi }}\right){\frac {\sqrt {\sigma _{i}\sigma _{j}}}{\sigma _{k}}}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y_{3}=\left[\sum _{i=1}^{m}\left({\frac {\xi _{i}}{\xi }}\right)^{2/3}x_{i}^{1/3}\right]^{3}}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Delta _{ij}={\frac {\sqrt {\xi _{i}\xi _{j}}}{\xi }}{\frac {(\sigma _{i}-\sigma _{j})^{2}}{\sigma _{i}\sigma _{j}}}{\sqrt {x_{i}x_{j}}}}
Santos, Yuste and López De Haro[edit]
Ref. 2
Hansen-Goos and Roth[edit]
Ref. 3 Based on the Carnahan-Starling equation of state
References[edit]
- G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics 54 pp. 1523-1525 (1971)
- Andrés Santos; Santos Bravo Yuste; Mariano López De Haro "Equation of state of a multicomponent d-dimensional hard-sphere fluid", Molecular Physics 96 pp. 1-5 (1999)
- Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics 124 154506 (2006)