Hard disk model
Hard disks are hard spheres in two dimensions. The hard disk intermolecular pair potential is given by[1] [2]
where is the intermolecular pair potential between two disks at a distance , and is the diameter of the disk. This page treats hard disks in a two-dimensional space, for three dimensions see the page hard disks in a three dimensional space.
Phase transitions[edit]
Despite the apparent simplicity of this model/system, the phase behaviour and the nature of the phase transitions remains an area of active study ever since the early work of Alder and Wainwright [3]. Recent works show a phase diagram containing an isotropic, a hexatic, and a solid phase [4]. Highly efficient event-chain Monte Carlo simulations of over 1 million hard disks by Bernard and Krauth have solidified this picture, with a first-order phase transition between the fluid at packing fraction and the hexatic phase at , and a continuous transition between the hexatic and solid phases at [5]. Note that the maximum possible packing fraction is given by [6]. This scenario has since been confirmed using a variety of simulation methods [7].
Similar results have been found using the BBGKY hierarchy [8] and by studying tessellations (the hexatic region: ) [9]. Also studied via integral equations [10]. Experimental results [11].
Equations of state[edit]
- Main article: Equations of state for hard disks
Virial coefficients[edit]
- Main article: Hard sphere: virial coefficients
See also[edit]
References[edit]
- ↑ Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller, "Equation of State Calculations by Fast Computing Machines", Journal of Chemical Physics 21 pp.1087-1092 (1953)
- ↑ W. W. Wood "Monte Carlo calculations of the equation of state of systems of 12 and 48 hard circles", Los Alamos Scientific Laboratory Report LA-2827 (1963)
- ↑ B. J. Alder and T. E. Wainwright "Phase Transition in Elastic Disks", Physical Review 127 pp. 359-361 (1962)
- ↑ C. H. Mak "Large-scale simulations of the two-dimensional melting of hard disks", Physical Review E 73 065104(R) (2006)
- ↑ E. P. Bernard and W. Krauth "Two-Step Melting in Two Dimensions: First-Order Liquid-Hexatic Transition", Physical Review Letters 107 155704 (2011)
- ↑ L. Fejes Tóth "Über einen geometrischen Satz." Mathematische Zeitschrift 46 pp. 83-85 (1940)
- ↑ M. Engel, J. A. Anderson, S. C. Glotzer, M. Tsobe, E. P. Bernard, and W. Krauth "Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods", Physical Review E 87 042134 (2013)
- ↑ Jarosław Piasecki, Piotr Szymczak, and John J. Kozak "Prediction of a structural transition in the hard disk fluid", Journal of Chemical Physics 133 164507 (2010)
- ↑ John J. Kozak, Jack Brzezinski and Stuart A. Rice "A Conjecture Concerning the Symmetries of Planar Nets and the Hard disk Freezing Transition", Journal of Physical Chemistry B 112 pp. 16059-16069 (2008)
- ↑ Luis Mier-y-Terán, Brian Ignacio Machorro-Martínez, Gustavo A. Chapela, and Fernando del Río "Study of the hard-disk system at high densities: the fluid-hexatic phase transition", Journal of Chemical Physics 148 234502 (2018)
- ↑ Alice L. Thorneywork, Joshua L. Abbott, Dirk G. A. L. Aarts, and Roel P. A. Dullens "Two-Dimensional Melting of Colloidal Hard Spheres", Physical Review Letters 118 158001 (2017)
Related reading
- Ya G Sinai "Dynamical systems with elastic reflections", Russian Mathematical Surveys 25 pp. 137-189 (1970)
- Katherine J. Strandburg, John A. Zollweg, and G. V. Chester "Bond-angular order in two-dimensional Lennard-Jones and hard-disk systems", Physical Review B 30 pp. 2755 - 2759 (1984)
- Nándor Simányi "Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems", Inventiones Mathematicae 154 pp. 123-178 (2003)
- Roland Roth, Klaus Mecke, and Martin Oettel "Communication: Fundamental measure theory for hard disks: Fluid and solid", Journal of Chemical Physics 136 081101 (2012)
External links[edit]
- Hard disks and spheres computer code on SMAC-wiki.