Hard superball model
Jump to navigation
Jump to search
The hard superball model is defined by the inequality
where x, y and z are scaled Cartesian coordinates with q the deformation parameter and radius a. The shape of the superball interpolates smoothly between two Platonic solids, namely the octahedron (q = 0.5) and the cube (q = ∞) via the sphere (q = 1) as shown in the right figure.
Particle Volume[edit]
The volume of a superball with the shape parameter q and radius a is given by
where is the Gamma function.
Overlap algorithm[edit]
The most widely used overlap algorithm is on the basis of Perram and Wertheim method [1] [2].
Phase diagram[edit]
The full phase diagram of hard superballs whose shape interpolates from cubes to octahedra was reported in Ref [2].
References[edit]
- ↑ John W. Perram and M. S. Wertheim "Statistical mechanics of hard ellipsoids. I. Overlap algorithm and the contact function", Journal of Computational Physics 58 pp. 409-416 (1985)
- ↑ 2.0 2.1 R. Ni, A.P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra "Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra", Soft Matter 8 pp. 8826-8834 (2012)