Michael E. Fisher
Michael Ellis Fisher (1931-) is a Distinguished University Professor and Regents Professor in the Institute for Physical Science and Technology and Department of Physics at the University of Maryland. He is known for his contributinos to statistical physics, including the theory of phase transitions and critical phenomena.
Fisher was born on Sept. 3, 1931 in Trinidad. He earned a B.Sc. at King's College, University of London and completed his Ph.D. in Physics there in 1957.
He taught at King's College, reaching the rank of Professor from 1958-1966. He then emigrated to the United States to become a Professor of Chemistry and Mathematics at Cornell University. At Cornell, he was active in University governance, including serving as the Secretary of the University Senate and as Chair of the Chemistry Department.
In 1987, Fisher moved to the University of Maryland.[1]
Honors[edit]
Fisher is a recipient of the Wolf Prize 1980 (together with Kenneth G. Wilson and Leo P. Kadanoff), the ACS Irving Langmuir Prize 1971 in Chemical Physics, the IUPAP Boltzmann Medal 1983, the APS Lars Onsager Prize 1995, among other honors.
Selected publications[edit]
- Michael E. Fisher and David Ruelle "The Stability of Many-Particle Systems", Journal of Mathematical Physics 7 pp. 260- (1966)
- The story of Coulombic criticality, J. Stat. Phys. 75,1-36 (1994).
- On the absence of intermediate phases in the two-dimensional Coulomb gas (M.E.F., X.-J. Li and Y. Levin) J. Stat. Phys. 79, 1-11; 81 [E] 865 (1995).
- The renormalized coupling constants and related amplitude ratios for Ising systems (S.-Y. Zinn, S.-N. Lai, and M.E.F.) Phys. Rev. E 54, 1176-1182 (1996).
- Prewetting transitions in a near-critical metallic vapor, V.F. Kozhevnikov, D.I. Arnold, S.P. Naurzakov, and M.E.F., Phys. Rev. Lett. 78, 1735-1738 (1997).
- Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653-681 (1998).
- Fluctuations in electrolytes: the Lebowitz and other correlation lengths (S. Bekiranov and M.E.F.) Phys. Rev. Lett. 81, 5836-39 (1998).
- The force exerted by a molecular motor, M.E.F. and A.B. Kolomeisky, Proc. Nat'l Acad. Sci. USA, 96, 6597-6602 (1999).
- The Yang-Yang anomaly in fluid criticality: Experiment and scaling theory (M.E.F. and G. Orkoulas) Phys. Rev. Lett. 85, 696-699 (2000).
- Extended kinetic models with waiting-time distributions: exact results (A.B. Kolomeisky and M.E.F.) J. Chem. Phys. 113, 10 867-877 (2000)
- Force-velocity relation for growing microtubules (A.B. Kolomeisky and M.E.F.) Biophys. J. 80, 149-154 (2001).
- The critical locus of a simple fluid with added salt (Y.C. Kim and M.E.F.) J. Phys. Chem. B 105, 11785-95 (2001).
- Universality class of criticality in the restricted primitive model electrolyte (E. Luijten, M.E.F. and A. Z. Panagiotopoulos) Phys. Rev. Lett. 88, 185701:1-4 (2002).
- A simple kinetic model describes the processivity of myosin-V (A.B.Kolomeisky and M.E.F.) Biophys. J. 84, 1642-1650 (2003).
- Precise simulation of near-critical fluid coexistence (Y.C. Kim, M.E.F. and E. Luijten) [arXiv:cond-mat/0304032] Phys. Rev. Lett. 91, 065701:1-4 (2003).
- Ionic criticality: an exactly soluble model (J.-N. Aqua and M.E.F.) [arXiv:cond-mat/0311491] Phys. Rev. Lett. 92, 135702:1-4 (2004).
- Discretization dependence of criticality in model fluids: a hard core electrolyte (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0402275] Phys. Rev. Lett. 92, 185703:1-4 (2004).
- Charge and density fluctuations lock horns: ionic criitcality with power-law forces (J.-N. Aqua and M.E.F.) J. Phys. A 37, L241-L248 (2004).
- Scaling for interfacial tensions near critical endpoints (S.-Y. Zinn and M.E.F.) [arXiv: cond-mat/0410673] Phys. Rev. E 71, 011601:1-17 (2005).
- Interfacial tensions near critical endpoints: experimental checks of EdGF theory (S.-Y. Zinn and M.E.F.) Molec. Phys. 103, 2927-2942 (2005): issue in honor of B. Widom
- How multivalency controls ionic criticality (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cont-mat/0507077] Phys. Rev. Lett. 95, 135701:1-4 (2005).
- Criticality in charge asymmetric ionic fluids (J.-N. Aqua, S. Banerjee and M.E.F.) [arXiv:cond-mat/0410692] Phys. Rev. E 72,041501:1-25(2005).
- Convergence of fine-lattice discretization for near-critical fluids (S. Moghaddam, Y.C. Kim and M.E.F.) [arXiv:cond-mat/0502169] J. Phys. Chem. B 109, 6824-37(2005).
- Fluid coexistence close to criticality: Scaling algorithms for precise simulation ( Y.C. Kim and M.E.F.) [arXiv:cond--mat/0411736] Comp. Phys. Commun. 169, 295-300 (2005).
- Singular coexistence-curve diameters: Experiments and simulations (Y.C. Kim and M.E.F.) [arXiv:cond-mat/0507369] Chem. Phys. Lett. 414, 185-192 (2005).
- Vectorial loading of processive motor proteins: Implementing a landscape picture ( Y.C. Kim and M.E.F.) [arXiv: cond-mat/0506185] J. Phys.: Condens. Matt. 17, S3821-S3838 2005).
- Kinesin crouches to sprint but resists pushing (M.E.F. and Y.C. Kim) Proc. Natl. Acad. Sci. USA 102, 16209-16214 (2005).
- Universality of ionic criticality: Size- and charge-asymmetric electrolytes (Y.C. Kim, M.E.F. and A.Z. Panagiotopoulos) Phys. Rev. 95, 195703:1-4 (2005)
See also[edit]
References[edit]
- ↑ http://terpconnect.umd.edu/~xpectnil/FisherSummaryCV.html Retrieved 2009-02-11.