Spherical harmonics

From SklogWiki
Jump to navigation Jump to search

The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates. They are given by

where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{n}^{m}} is the associated Legendre function.

The first few spherical harmonics are given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_0^0 (\theta,\phi) = \frac{1}{2} \frac{1}{\sqrt{\pi}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^{-1} (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{-i\phi} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^0 (\theta,\phi) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos \theta }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} }

See also[edit]

References[edit]