Virial equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
No edit summary
 
(One intermediate revision by one other user not shown)
Line 11: Line 11:
*<math> V </math>  is the volume
*<math> V </math>  is the volume
*<math> N </math> is the number of molecules
*<math> N </math> is the number of molecules
*<math>T</math> is the [[temperature]]
*<math> T </math> is the [[temperature]]
*<math>k_B</math> is the [[Boltzmann constant]]
*<math>k_B</math> is the [[Boltzmann constant]]
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density
Line 40: Line 40:
*Edward Allen Mason and Thomas Harley Spurling "The virial equation of state", Pergamon Press (1969) ISBN 0080132928
*Edward Allen Mason and Thomas Harley Spurling "The virial equation of state", Pergamon Press (1969) ISBN 0080132928
*[http://dx.doi.org/10.1063/1.4929392  Nathaniel S. Barlow, Andrew J. Schultz, Steven J. Weinstein and David A. Kofke "Analytic continuation of the virial series through the critical point using parametric approximants", Journal of Chemical Physics '''143''' 071103 (2015)]
*[http://dx.doi.org/10.1063/1.4929392  Nathaniel S. Barlow, Andrew J. Schultz, Steven J. Weinstein and David A. Kofke "Analytic continuation of the virial series through the critical point using parametric approximants", Journal of Chemical Physics '''143''' 071103 (2015)]
 
*[https://doi.org/10.1063/1.5016165 Harold W. Hatch, Sally Jiao, Nathan A. Mahynski, Marco A. Blanco, and Vincent K. Shen "Communication: Predicting virial coefficients and alchemical transformations by extrapolating Mayer-sampling Monte Carlo simulations", Journal of Chemical Physics '''147''' 231102 (2017)]


[[category:equations of state]]
[[category:equations of state]]

Latest revision as of 14:51, 17 November 2020

The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, , in terms of either the density or the pressure. Such an expansion was first introduced in 1885 by Thiesen [1] and extensively studied by Heike Kamerlingh Onnes [2] [3], and mathematically by Ursell [4]. One has

.

where

  • is the pressure
  • is the volume
  • is the number of molecules
  • is the temperature
  • is the Boltzmann constant
  • is the (number) density
  • is called the k-th virial coefficient

Virial coefficients[edit]

The second virial coefficient represents the initial departure from ideal-gas behaviour

where is Avogadros number and and are volume elements of two different molecules in configuration space.

One can write the third virial coefficient as

where f is the Mayer f-function (see also: Cluster integrals). See also [5]

Convergence[edit]

For a commentary on the convergence of the virial equation of state see [6] and section 3 of [7].

Quantum virial coefficients[edit]

Using the path integral formulation one can also calculate the virial coefficients of quantum systems [8].

References[edit]

Related reading