Virial equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
No edit summary
 
Line 11: Line 11:
*<math> V </math>  is the volume
*<math> V </math>  is the volume
*<math> N </math> is the number of molecules
*<math> N </math> is the number of molecules
*<math>T</math> is the [[temperature]]
*<math> T </math> is the [[temperature]]
*<math>k_B</math> is the [[Boltzmann constant]]
*<math>k_B</math> is the [[Boltzmann constant]]
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density
*<math> \rho \equiv \frac{N}{V} </math> is the (number) density

Latest revision as of 14:51, 17 November 2020

The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compressibility factor, , in terms of either the density or the pressure. Such an expansion was first introduced in 1885 by Thiesen [1] and extensively studied by Heike Kamerlingh Onnes [2] [3], and mathematically by Ursell [4]. One has

.

where

  • is the pressure
  • is the volume
  • is the number of molecules
  • is the temperature
  • is the Boltzmann constant
  • is the (number) density
  • is called the k-th virial coefficient

Virial coefficients[edit]

The second virial coefficient represents the initial departure from ideal-gas behaviour

where is Avogadros number and and are volume elements of two different molecules in configuration space.

One can write the third virial coefficient as

where f is the Mayer f-function (see also: Cluster integrals). See also [5]

Convergence[edit]

For a commentary on the convergence of the virial equation of state see [6] and section 3 of [7].

Quantum virial coefficients[edit]

Using the path integral formulation one can also calculate the virial coefficients of quantum systems [8].

References[edit]

Related reading