Pair distribution function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (→‎References: Added a reference)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
For a fluid of <math>N</math> particles, enclosed in a volume <math>V</math> at a given temperature <math>T</math>
For a fluid of <math>N</math> particles, enclosed in a volume <math>V</math> at a given [[temperature]] <math>T</math>
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as


:<math>{\rm g}_N^{(2)}(r_1,r_2)= V^2 \frac
:<math>{\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2)= V^2 \frac{\int ... \int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_3...{\rm d}{\mathbf r}_N}{\int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_1...{\rm d}{\mathbf r}_N}</math>
{\int ... \int e^{-\beta \Phi(r_1,...,r_N)}{\rm d}r_3...{\rm d}r_N}
{\int e^{-\beta \Phi(r_1,...,r_N){\rm d}r_1...{\rm d}r_N}}</math>


where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]].
where <math>\beta := 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]].
==Exact convolution equation for <math>g(r)</math>==
==Exact convolution equation for <math>{\mathrm g}(r)</math>==
See Eq. 5.10 of Ref. 1:
See Eq. 5.10 of Ref. 1:


:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math>
:<math>\ln {\mathrm g}(r_{12}) + \frac{\Phi(r_{12})}{k_BT} - E(r_{12}) = n \int \left({\mathrm g}(r_{13}) -1 - \ln {\mathrm g}(r_{13}) -  \frac{\Phi(r_{13})}{k_BT} - E(r_{13})  \right)({\mathrm g}(r_{23}) -1)  ~{\rm d}{\mathbf r}_3</math>
 


where, ''i.e.'' <math>r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|</math>.
==See also==
==See also==
*[[Radial distribution function]]
*[[Radial distribution function]]
Line 21: Line 19:
==References==
==References==
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)]
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)]
 
#[http://dx.doi.org/10.1103/PhysRevE.68.011202      N. G. Almarza and E. Lomba "Determination of the interaction potential from the pair distribution function: An inverse Monte Carlo technique", Physical Review E '''68''' 011202 (2003)]
[[category: statistical mechanics]]
[[category: statistical mechanics]]

Latest revision as of 11:39, 26 February 2008

For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as

where , where is the Boltzmann constant.

Exact convolution equation for [edit]

See Eq. 5.10 of Ref. 1:

where, i.e. .

See also[edit]

References[edit]

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)
  2. N. G. Almarza and E. Lomba "Determination of the interaction potential from the pair distribution function: An inverse Monte Carlo technique", Physical Review E 68 011202 (2003)