Pair distribution function: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) m (→References: Added a reference) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
For a fluid of <math>N</math> particles, enclosed in a volume <math>V</math> at a given temperature <math>T</math> | For a fluid of <math>N</math> particles, enclosed in a volume <math>V</math> at a given [[temperature]] <math>T</math> | ||
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as | ||
:<math>{\rm g}_N^{(2)}( | :<math>{\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2)= V^2 \frac{\int ... \int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_3...{\rm d}{\mathbf r}_N}{\int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_1...{\rm d}{\mathbf r}_N}</math> | ||
{\int ... \int e^{-\beta \Phi( | |||
{\int e^{-\beta \Phi( | |||
where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | where <math>\beta := 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]]. | ||
==Exact convolution equation for <math>g(r)</math>== | ==Exact convolution equation for <math>{\mathrm g}(r)</math>== | ||
See Eq. 5.10 of Ref. 1: | See Eq. 5.10 of Ref. 1: | ||
:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{ | :<math>\ln {\mathrm g}(r_{12}) + \frac{\Phi(r_{12})}{k_BT} - E(r_{12}) = n \int \left({\mathrm g}(r_{13}) -1 - \ln {\mathrm g}(r_{13}) - \frac{\Phi(r_{13})}{k_BT} - E(r_{13}) \right)({\mathrm g}(r_{23}) -1) ~{\rm d}{\mathbf r}_3</math> | ||
where, ''i.e.'' <math>r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|</math>. | |||
==See also== | ==See also== | ||
*[[Radial distribution function]] | *[[Radial distribution function]] | ||
Line 21: | Line 19: | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)] | #[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)] | ||
#[http://dx.doi.org/10.1103/PhysRevE.68.011202 N. G. Almarza and E. Lomba "Determination of the interaction potential from the pair distribution function: An inverse Monte Carlo technique", Physical Review E '''68''' 011202 (2003)] | |||
[[category: statistical mechanics]] | [[category: statistical mechanics]] |
Latest revision as of 11:39, 26 February 2008
For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as
where , where is the Boltzmann constant.
Exact convolution equation for [edit]
See Eq. 5.10 of Ref. 1:
where, i.e. .