Spherical harmonics: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→See also: Added a reference) |
(added general formula) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates. | The '''spherical harmonics''' <math>Y_l^m (\theta,\phi)</math> are the angular portion of the solution to [[Laplace's equation]] in spherical coordinates. | ||
They are given by | |||
:<math>Y_l^m (\theta,\phi) = | |||
(-1)^m \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}} | |||
P^m_n(\cos\theta) e^{i m \phi},</math> | |||
where <math> P^m_n </math> is the [[associated Legendre function]]. | |||
The first few spherical harmonics are given by: | The first few spherical harmonics are given by: | ||
Line 10: | Line 16: | ||
:<math>Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} </math> | :<math>Y_1^1 (\theta,\phi) = -\frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{i\phi} </math> | ||
==See also== | ==See also== | ||
*[[Wigner D-matrix]] | |||
*[http://mathworld.wolfram.com/SphericalHarmonic.html Spherical Harmonic -- from Wolfram MathWorld] | |||
==References== | |||
*M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) Appendix III | *M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) Appendix III | ||
*[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp. 65-79 (1989)] | *[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp. 65-79 (1989)] | ||
[[category: mathematics]] | [[category: mathematics]] |
Latest revision as of 11:54, 20 June 2008
The spherical harmonics are the angular portion of the solution to Laplace's equation in spherical coordinates. They are given by
where is the associated Legendre function.
The first few spherical harmonics are given by:
See also[edit]
References[edit]
- M. E. Rose "Elementary theory of angular momentum", John Wiley & Sons (1967) Appendix III
- I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics 39 pp. 65-79 (1989)