Compressibility: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 12: Line 12:
The  '''isothermal compressibility''',  <math>\kappa_T</math> is given by
The  '''isothermal compressibility''',  <math>\kappa_T</math> is given by


:<math>\kappa_T =-\frac{1}{V} \left.\frac{\partial V}{\partial P}\right\vert_{T} =  \frac{1}{\rho} \left.\frac{\partial \rho}{\partial P}\right\vert_{T}</math>
:<math>\kappa_T =-\frac{1}{V} \left.\frac{\partial V}{\partial p}\right\vert_{T} =  \frac{1}{\rho} \left.\frac{\partial \rho}{\partial p}\right\vert_{T}</math>


(Note: in Hansen and McDonald the isothermal compressibility is written as <math>\chi_T</math>).
(Note: in Hansen and McDonald the isothermal compressibility is written as <math>\chi_T</math>).

Revision as of 13:11, 21 June 2007

The compressibility, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z} , is given by

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z={\frac {pV}{Nk_{B}T}}}

The bulk modulus gives the change in volume of a solid substance as the pressure on it is changed,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = -V \frac{\partial P}{\partial V}}

The compressibility Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa} , is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa =\frac{1}{B}}

The isothermal compressibility, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_T} is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_T =-\frac{1}{V} \left.\frac{\partial V}{\partial p}\right\vert_{T} = \frac{1}{\rho} \left.\frac{\partial \rho}{\partial p}\right\vert_{T}}

(Note: in Hansen and McDonald the isothermal compressibility is written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_T} ). where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is the particle number density given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{V}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is the total number of particles in the system, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = \int_V \rho(r,t)~{\rm d}r}

See also

The compressibility equation in statistical mechanics.

Compressibility of an Ideal Gas

From the ideal gas law we see that