Pair distribution function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 12: Line 12:


==See also==
==See also==
*[[Radial distribution function]]
*[[Compressibility equation]]
*[[Compressibility equation]]
*[[Pressure equation]]
*[[Pressure equation]]
*[[Energy equation]]
*[[Energy equation]]
==References==
==References==
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)]
#[http://dx.doi.org/10.1088/0034-4885/28/1/306 J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics '''28''' pp. 169-199 (1965)]


[[category: statistical mechanics]]
[[category: statistical mechanics]]

Revision as of 16:43, 26 June 2007

For a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} particles, enclosed in a volume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} at a given temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} (canonical ensemble) interacting via the `central' potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)} , the two particle distribution function is defined as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}_N^{(2)}(r_1,r_2)= V^2 \frac {\int ... \int e^{-\beta \Phi(r_1,...,r_N)}{\rm d}r_3...{\rm d}r_N} {\int e^{-\beta \Phi(r_1,...,r_N){\rm d}r_1...{\rm d}r_N}}}

Exact convolution equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r)}

See Eq. 5.10 of Ref. 1:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) - \frac{\Phi(r_{13})}{kT} - E(r_{13}) \right)(g(r_{23}) -1) ~{\rm d}r_3}


See also

References

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)